
Overview

• Learning in general

• Inductive learning (chapter 18)

• Statistical learning: neural networks (chapter 20; old 19)
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Learning

• Adapt through interaction with the world: rote memory to

developing a complex strategy

• Types of learning:

1. Supervised learning (dense feedback)

2. Unsupervised learning (no feedback)

3. Reinforcement learning (sparse feedback, environment

altering), etc.

• Advantages (two, among many):

1. Fault tolerance

2. No need for a complete specification to begin with

• Becoming a central focus of AI.
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Inductive Learning

• Given example pairs (x, f(x)), return a function h that

approximates the function f :

– pure inductive inference, or induction.

• The function h is called a hypothesis.
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Training and Testing

Different Types of Error

• Training error

• Validation error

• Test error

Issues

• Generalization

• Bias-Variance dillema

• Overfitting, underfitting

• Model complexity
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Inductive Learning and Inductive Bias
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Given (a) as the training data, we can come up with several different

hypotheses: (b) to (d)

• selection of one hypothesis over another is called a inductive

bias (don’t confuse with other things called bias).

– exact match to training data

– prefer imprecise but smooth approximation

– etc.
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Decision Trees

No  Yes
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• learn to approximate discrete-valued target functions.

• step-by-step decision making (disjunction of conjunctions)

• applications: medical diagnosis, assess credit risk of loan

applicants, etc.

6

Decision Trees: What They Represent

No  Yes
Fri/Sat?

YesNo

None Some Full

Patrons?

No Yes
No  Yes

Hungry?

No
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Type?
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Yes No

Wait or not (Yes/No)? The decision tree above corresponds to:

(Patrons = Some)

∨(Patrons = Full ∧Hungry = No ∧ Type = French)

∨(Patrons = Full ∧Hungry = No ∧ Type = Thai ∧ Fri/Sat = Y es)

∨(Patrons = Full ∧Hungry = No ∧ Type = Burger)

Decision trees represent disjunction of conjunctions.
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Decision Trees: What They Represent (cont’d)
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Type?
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Yes No

• In other words, for each instance (or example), there are attributes

(Patrons, Hungry, etc.) and each instance have a full attribute value

assignment.

• For a given instance, it is classified into different discrete classes by the

decision tree.

• For training, many (instance, class) pairs are used.
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Constructing Decision Trees from Examples

Example Attributes Goal

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

X1 Yes No No Yes Some $$$ No Yes French 0–10 Yes
X2 Yes No No Yes Full $ No No Thai 30–60 No
X3 No Yes No No Some $ No No Burger 0–10 Yes
X4 Yes No Yes Yes Full $ No No Thai 10–30 Yes
X5 Yes No Yes No Full $$$ No Yes French >60 No
X6 No Yes No Yes Some $$ Yes Yes Italian 0–10 Yes
X7 No Yes No No None $ Yes No Burger 0–10 No
X8 No No No Yes Some $$ Yes Yes Thai 0–10 Yes
X9 No Yes Yes No Full $ Yes No Burger >60 No
X10 Yes Yes Yes Yes Full $$$ No Yes Italian 10–30 No
X11 No No No No None $ No No Thai 0–10 No
X12 Yes Yes Yes Yes Full $ No No Burger 30–60 Yes

• Given a set of examples (training set), both positive and

negative, the task is to construct a decision tree that describes a

concise decision path.

• Using the resulting decision tree, we want to classify new

instances of examples (either as yes or no).
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Constructing Decision Trees: Trivial Solution

• A trivial solution is to explicitly construct paths for each given

example.

• The problem with this approach is that it is not able to deal with

situations where, some attribute values are missing or new kinds

of situations arise.

• Consider that some attributes may not count much toward the

final classification.
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Finding a Concise Decision Tree

• Memorizing all cases may not be the best way.

• We want to extract a decision pattern that can describe a large

number of cases in a concise way.

• Such an inductive bias is called Ockham’s razor: The most likely

hypothesis is the simplest one that is consistent with all

observations.

• In terms of a decision tree, we want to make as few tests before

reaching a decision, i.e. the depth of the tree should be shallow.
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Finding a Concise Decision Tree (cont’d)

• Basic idea: pick up attributes that can clearly separate positive

and negative cases.

• These attributes are more important than others: the final

classification heavily depend on the value of these attributes.
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Finding a Concise Decision Tree (cont’d)
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Decision Tree Learning Algorithm

function DECISION-TREE-LEARNING(examples, attributes, default) returns a decision tree
inputs: examples, set of examples

attributes, set of attributes
default, default value for the goal predicate

if examples is empty then return default
else if all examples have the same classification then return the classification
else if attributes is empty then return MAJORITY-VALUE(examples)
else

best � CHOOSE-ATTRIBUTE(attributes, examples)
tree � a new decision tree with root test best
for each value vi of best do

examplesi
��� elements of examples with best = vi �

subtree � DECISION-TREE-LEARNING(examplesi, attributes � best,
MAJORITY-VALUE(examples))

add a branch to tree with label vi and subtree subtree
end
return tree
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Resulting Decision Tree

No  Yes
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Yes No

• Some attributes are not tested at all.

• Odd paths can be generated (Thai food branch).

• Sometimes the tree can be incorrect for new examples

(exceptional cases).
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Accuracy of Decision Trees
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• Divide examples into training and test sets.

• Train using the training set.

• Measure accuracy of resulting decision tree on the test set.
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Choosing the Best Attribute to Test First

Use Shannon’s information theory to choose the attribute that give the

maximum information gain.

• Pick an attribute such that the information gain (or entropy

reduction) is maximized.

• Entropy measures the average surprisal of events. Less

probable events are more surprising.
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Entropy and Information Gain

Entropy(E) =
∑

i∈C
−Pilog2(Pi)

Gain(E,A) = Entropy(E)−
∑

v∈V alues(A)

|Ev|
|E| Entropy(Ev)

• E: set of examples

• A: a single attribute

• Ev : set of examples where attributeA = v.

• |S| : cardinality of set S.
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Issues in Decision Tree Learning

• Noise and overfitting

• Missing attribute values from examples

• Multi-valued attributes with large number of possible values

• Continuous-valued attributes.
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Key Points

Decision tree learning:

• What is the embodied principle (or bias)?

• How to choose the best attribute? Given a set of examples,

choose the best attribute to test first.

• What are the issues? noise, overfitting, etc.
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Neural Networks

Neural networks is one particular form of learning from data.

• simple processing elements: named units, or neurons

• connective structure and associated connection weights

• learning: adaptation of connection weights

Neural networks mimic the human (or animal) nervous system.

21

Many Faces of Neural Networks

• Abstract mathematical/statistical model

• Optimization algorithm

• Pattern recognition algorithm

• Tools for understanding the function of the brain

• Robust engineering application
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The Central Nervous System

• Cortex: thin outer sheet where most of the neurons are.

• Sub-cortical nuclei: thalamus, hippocampus, basal ganglia, etc.

• Midbrain, pons, and medulla, connects to the spinal cord.

• Cerebellum (hind brain, or small brain)
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Function of the Nervous System

Function of the nervous system:

• Perception

• Cognition

• Motor control

• Regulation of essential bodily functions

24



The Central Nervous System: Facts a

Facts: human neocortex

• Thickness: 1.6mm

• Area: 36cm× 36cm (about 1.4 ft2)

• Neurons: 10 billion (1010)

• Connections: 60 trillion (6× 1013) to 100 trillion

• Connections per neuron: 104

• Energy usage per operation: 10−16J (compare to 10−6J in

modern computers)

a
Neural networks: a comprehensive foundation by Simon Haykin (1994), and Foundations of Vision by Brian

Wandell (1995). May slightly differ from those in Russel & Norvig. No need to memorize these figures.
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How the Brain Differs from Computers

• Densely connected.

• Massively parallel.

• Highly nonlinear.

• Asynchronous: no central clock.

• Fault tolerant.

• Highly adaptable.

• Creative.

Why are these crucial?
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Neurons: Basic Functional Unit of the Brain

AXON

AXON TERMINALS

DENDRITE

DENDRITIC
ARBOR

NUCLEUS

CELL BODY

• Dendrites receive input from upstream neurons.

• Ions flow in to make the cell positively charged.

• Once a firing threshold is reached, a spike is generated and transmitted

along the axon.

• Axon terminals release neurotransmitters to relay the signal to the

downstream neurons.
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Propagation of Activation Across the Synapse

AXON

DENDRITE

DENDRITIC
ARBOR

NUCLEUS

CELL BODY

AXON TERMINALS

Presynaptic
Neuron

Postsynaptic
Neuronneurotransmitter

Potential

Postsynaptic
PotentialAction

Synaptic
Cleft

1. Action potential reaches axon terminal.

2. Neurotransmitters are released into synaptic cleft and bind to postsynaptic

cell’s receptors.

3. Binding allows ion channels to open (Na+), and Na+ ions flows in and

makes the postsynaptic cell depolarize.

4. Once the membrane voltage reaches the threshold, an action potential is

generated.

Lesson: neural activity propagation has a very complex cellular/molecular

mechanism.
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Abstraction of the Neuron in Neural Networks

f(Σwx)

wx

• Input

• Connection weight

• Transfer function: f(·)

Typical transfer functions: step-function or sigmoid.
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Typical Activation Functions
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• Stept(x) = 1 if x ≥ t, 0 if x < t

• Sign(x) = +1 if x ≥ 0,−1 if x < 0

• Sigmoid(x) = 1
1+e−x

Note that Stept(x) = Step0(x− t), which we will simply call

Step(x− t).
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More Activation Functions: tanh(x2 )
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• Sigmoid(x) = 1
1+e−x

• tanh(x
2

) = 1−e−x

1+e−x
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Classification of Neural Networks

Teacher exists?

• Supervised (with teacher): perceptrons, backpropagation

network, etc.

• Unsupervised (no teacher): self-organizing maps, etc.

Recurrent connections?

• Feed-forward: perceptrons, backpropagation network, etc.

• Recurrent: Hopfield network, Boltzmann machines, SRN (simple

recurrent network), etc.
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Feedforward Networks

• Perceptrons: single layer, threshold-gated.

• Backpropagation networks: multiple layers, sigmoid (or tanh)

activation function.

33

Perceptrons

ia

f(Σwx)
aj

wij

ai = stept(

n∑

j=1

Wijaj)

= step0(

n∑

j=1

Wijaj − t)

= step0(t× (−1) +
n∑

j=1

Wijaj)

= step0(
n∑

j=0

Wijaj), whereWi0 = t and a0 = −1 (1)
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Boolean Logic Gates with Perceptron Units a

−1 t=1.5

W1=1

W2=1

−1

W1=1

W2=1

−1t=0.5

W1=−1

t=−0.5

AND OR NOT

• Note that the activation function is the step0(·) function.

• Perceptrons can represent basic boolean functions.

• Thus, a network of perceptron units can compute any Boolean

function.

What about XOR or EQUIV?

aSame as Russel & Norvig p.570, figure 19.6
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Limitation of Perceptrons

t−1

I0

I1

w0

w1

I0

I1

W1
t

Slope = −W0
W1

Output = 1

Output=0fs

Perceptrons can only represent linearly-separable functions.

• Output of the perceptron:

W0 × I0 +W1 × I1 − t ≥ 0, then output is 1

W0 × I0 +W1 × I1 − t < 0, then output is 0
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Limitation of Perceptrons (cont’d)

t−1

I0

I1

w0

w1

I0

I1

W1
t

Slope = −W0
W1

Output = 1

Output=0fs

• A geometrical interpretation of this is:

I1 =
−W0

W1

× I0 +
t

W1

,

where points on or above the line, the output is 1, and 0 for those below the

line (whenW1 is positive). Compare with

y =
−W0

W1

× x+
t

W1

.

Note: When dividing both sides withW1 , depending on the sign, the inequality

can flip its direction (see previous page).
37

Limitation of Perceptrons (cont’d)

t−1
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Output = 1

Output=0fs

• Thus, only functions where the points that result in 0 and 1 as

output can be separated by a line can be represented by

perceptrons.

• Note: the previous result is generalizable to functions of n

arguments, i.e. perceptron with n inputs plus one threshold (or

bias) unit.
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Linear Separability

I0

I1

I0

I1

Linearly−separable Not Linearly−separable

• For functions that take integer or real values as arguments and

output either 0 or 1.

• Left: linearly-separable (i.e., can draw a straight line between the

classes).

• Right: not linearly-separable (i.e., perceptrons cannot represent

such a function)
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Linear Separability (cont’d)

I1

I0

I1
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AND OR XOR

0

0 00 0 1
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1

?

• Perceptrons cannot represent XOR!

• Minsky and Papert (1969)
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Learning in Perceptrons

ia

f(Σwx)
aj

wij

• The weights do not have to be calculated manually.

• We can train the network with (input,output) pair according to the

following weight update rule:

Wij ←Wij + α× Ij × Err,
where α is the learning rate parameter, Ij is the input (aj in the

figure), andErr = DesiredOutput−NetworkOutput.
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Exercise: Implementing the Perceptron

• It is fairly easy to implement a perceptron.

• You can implement it in any programming language: C/C++, etc.

• Look for examples on the web, and JAVA applet demos.
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Key Points

• The central nervous system: how it differs from conventional

computers.

• Basic mechanism of synaptic information transfer

• Types of neural networks

• Perceptrons: basic idea, and the geometric interpretation. What is

the limitation? How to train?
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Overview

• Multilayer feed-forward networks

• Gradient descent search

• Backpropagation learning rule

• Evaluation of backpropagation

• Applications of backpropagation
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Multilayer Feed-Forward Networks

Input

Hidden

Output O

a

I

W

W

k

j

i

ij

jk

• Proposed in the 1950s

• Proper procedure for training the network came later (1969) and

became popular in the 1980s: back-propagation
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Back-Propagation Learning Rule
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• Back-prop is basically a gradient descent algorithm.

• The tough problem: output layer has explicit error measure, so

finding the error surface is trivial. However, for the hidden layers,

how much error each connection eventually cause at the output

nodes is hard to determine.

• Backpropagation determines how to distribute the blame to each

connection.
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Gradient Descent

• We want to minimize the total errorE by tweaking the network

weights.

• E depends onWi, thus by adjustingWi, you can reduceE.

• Figuring out how to simultaneously adjust weightsWi for all i at

once is practically impossible, so use an iterative approach.

• A sensible way is to reduceE with respect to one weightWi at a

time, proportional to the gradient (or slope) at that point.
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Gradient Descent (cont’d)

∆W = −∆W = +

E Negative Slope
Positive Slope

W

• For weightWi and error functionE, to minimizeE,Wi should be

changed according toWi ← Wi + ∆Wi :

∆Wi = α×
(
− ∂E

∂Wi

)
,

where α is the learning rate parameter.

• E can be a function of many weights, thus the partial derivative is used in

the above:

E(W1,W2, ...,Wi, ...Wn, ....)
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Hidden to Output Weights
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• Error function

E =
1

2

∑

i

(Ei)
2

Ei = Ti −Oi

= Ti − g


∑

j

Wijaj


 ,

where g(·) is the sigmoid activation function, and Ti the target.
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Hidden to Output Weights (cont’d)
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∂E

∂Wij

=

∂

(
1
2

∑
i

(
Ti − g

(∑
j Wijaj

))2
)

∂Wij

=

∂

(
1
2

(
Ti − g

(∑
j Wijaj

))2
)

∂Wij

= (Ti −Oi)×
(
−
∂g(
∑

j Wijaj)

∂Wij

)

= −(Ti −Oi)× g′(
∑

j

Wijaj)× aj
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Hidden to Output Weights (cont’d)

• For easier calculation later on, we can rewrite:

∂E

∂Wij
= −(Ti −Oi)× g′(

∑

j

Wijaj)× aj

= −aj × (Ti −Oi)× g′(
∑

j

Wijaj)

︸ ︷︷ ︸
= −aj ×∆i

• It is easy to verify g′(x) = g(x)(1− g(x)) from

g(x) = 1
1+e−x , so we can reuse the g(x) value from the

feed-forward phase in the feedback weight update.
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Hidden to Output Weight Update

Input

Hidden

Output O

a

I

W

W

k

j

i

ij

jk

• From ∂E
∂Wij

= −aj ×∆i, we get the update rule:

Wij ←Wij + α× aj ×∆i,

where ∆i = (Ti −Oi)× g′(
∑

j Wijaj).
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Input to Hidden Weights
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∂E

∂Wjk

=

∂

(
1
2

∑
i

(
Ti − g

(∑
j Wijaj

))2
)

∂Wjk

=

∂

(
1
2

∑
i

(
Ti − g

(∑
j Wij

(
g
(∑

kWjkIk
))))2

)

∂Wjk

However, this is too complex.
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Input to Hidden Weights (cont’d)
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Use the chain rule for easier calculation of the partial derivative:

∂E

∂Wjk

=
∂E

∂aj

×
∂aj

∂Wjk

= −
∑

i




this is ∆i
︷ ︸︸ ︷
(Ti − Oi)g

′
(
∑

j

Wijaj) Wij




︸ ︷︷ ︸

× g
′
(
∑

k

WjkIk)Ik

︸ ︷︷ ︸

= −
∑

i

(
∆iWij

)

︸ ︷︷ ︸

g
′
(
∑

k

WjkIk)Ik

︸ ︷︷ ︸
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Input to Hidden Weight Update Rule
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From ∂E
∂Wjk

, we can rename

∑
i (∆iWij) g′(

∑
kWjkIk) to be ∆j , then the whole equation

becomes:

∂E

∂Wjk

= −∆jIk

Thus the update rule becomes:

Wjk ← Wjk + α×∆j × Ik
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Back-Propagation: Summary
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• Weight update:

∆Wyx ∝ ∆y × Inputx

• The ∆s:

∆y = Errory × g′(WeightedSumy)

Thus, each node has its own ∆ and that is used to update the weights.

These ∆s are backpropagated for weight updates further below.
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General Case: More Than 2 Layers

• In general, the same rule for back-propagating ∆s apply for

multiple layer networks with more than two layers.

• That is, ∆ for a deep hidden unit can be determined by the

product of the weighted sum of feedback ∆s and the first

derivative of feedforward weighted sum at the current unit.
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Backpropagation Algorithm

1. Pick (Input, Target) pair.

2. Using input, activate hidden and output layers through

feed-forward activation.

3. At the output node, calculate the error (Ti −Oi), and from that

calculate the ∆s.

4. Update weights to the output layer, and backpropagate the ∆s.

5. Successively update hidden layer weights until Input layer has

been reached.

6. Repeat step1–5 until the total error goes below a set threshold.
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Technical Issues in Training

• Batch vs. online training

– Batch: accumulate weight updates for one epoch, and then

update

– Online: immediately apply weight updates after one

input-output pair.

• When to stop training

– Training set: use for training

– Validation set: determine when to stop

– Test set: use for testing performance
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Problems With Backprop

• Learning can be extremely slow: introduce momentum, etc.

• Network can be stuck in local minima: this is a common problem

for any gradient-based method.

Other issues are: how to introduce new batches of data after the

training has been completed.
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Backprop Application

• Speech generation: NetTALK (Sejnowski and Rosenberg, 1987)

• Character recognition: LeCun (1989)

• Driving a car: ALVINN, etc.

and many other Engineering applications – control, etc., especially

nowadays in the form of deep neural networks (e.g., convolutional

neural network).
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Demo: NetTALK

• I want to I want to go to my grandmother’s ....

• friend, sent, around, not, red, soon, doubt, key, attention, lost
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Key Points

• Basic concept of a multi-layer feed-forward network.

• How hidden units know how much error they caused.

• Backprop is a gradient descent algorithm.

• Drawbacks of backprop.
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Overview

• More on backprop

• Self-organizing maps
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Another Application of Backpropagation: Image

Compression
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• Image compression

1. target output is the same as the input.

2. hidden layer units are fewer than the output (and input) layer

units.

3. the hidden layer forms the compressed representation.
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Improving Backpropagation a

To overcome the local minima problem:

• Adding momentum

∆Wij(t) = α×∆i × Ij + η ×∆Wij(t− 1)

• Incremental update (as opposed to batch update) with random

input-target order.

• Add a little bit of noise to the input.

• Allow increasingE with a small probability, as in Simulated

Annealing.

a From Hertz et al., Introduction to the Theory of Neural Computation,

Addison Wesley, 1991.
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Backpropagation Exercise

• URL: http://www.cs.tamu.edu/faculty/choe/src/backprop-1.6.tar.gz

• Untar and read the README file:

gzip -dc backprop-1.6.tar.gz | tar

xvf -

• Run make to build (on departmental unix machines).

• Run ./bp conf/xor.conf etc.
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Backpropagation: Example Results
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• Epoch: one full cycle of training through all training input patterns.

• OR was easiest, AND the next, and XOR was the most difficult to

learn.

• Network had 2 input, 2 hidden and 1 output unit. Learning rate

was 0.001.
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Backpropagation: Example Results (cont’d)
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Output to (0,0), (0,1), (1,0), and (1,1) form each row.
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Backpropagation: Things to Try

• How does increasing the number of hidden layer units affect the

(1) time and the (2) number of epochs of training?

• How does increasing or decreasing the learning rate affect the

rate of convergence?

• How does changing the slope of the sigmoid affect the rate of

convergence?

• Different problem domains: handwriting recognition, etc.
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Unsupervised Learning

• No teacher signal (i.e. no feedback from the environment).

• The network must discover patterns, features, regularities,

correlations, or categories in the input data and code them in the

output.

• The units and connections must display some degree of

self-organization.

• Unsupervised learning can be useful when there is redundancy

in the input data.

• A data channel where the input data content is less than the

channel capacity, there is redundancy.
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What Can Unsupervised Learning Do?

• Familiarity: how similar is the current input to past inputs?

• Principal Component Analysis: find orthogonal basis vectors

(or axes) against which to project high dimensional data.

• Clustering: n output class, each representing a distinct category.

Each cluster of similar or nearby patterns will be classified as a

single class.

• Prototyping: For a given input, the most similar output class (or

exemplar) is determined.

• Encoding: application of clustering/prototyping.

• Feature Mapping: topographic mapping of input space onto

output network configuration.
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Self-Organizing Map (SOM)
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Kohonen (1982)

• 1-D or 2-D layout of units.

• One reference vector for each unit.

• Unsupervised learning (no target output).
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SOM Algorithm
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1. Randomly initialize reference vectors wi

2. Randomly sample input vector x

3. Find Best Matching Unit (BMU):

i(x) = argminj ‖ x−wj ‖

4. Update reference vectors:

wj ← wj + αΛ(j, i(x))(x−wj )

α : learning rate

Λ(j , i(x)) : neighborhood function of BMU.

5. Repeat steps 2 – 4.
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Typical Neighborhood Functions

Gaussian Neighborhood

exp(-(x*x+y*y)/2)
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• Gaussian: Λ(j, i(x)) = exp(−|rj − ri(x)|2/2σ2)

• Flat: Λ(j, i(x)) = 1 if |rj − ri(x)| ≤ σ, and 0 otherwise.

• σ is called the neighborhood radius.
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Training Tips

• Start with large neighborhood radius.

Gradually decrease radius to a small value.

• Start with high learning rate α.

Gradually decrease α to a small value.

76



Properties of SOM
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• Approximation of input space.

Maps continuous input space to dis-

crete output space.

• Topology preservation.

Nearby units represent nearby points

in input space.

• Density mapping.

More units represent input space that

are more frequently sampled.
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Performance Measures

• Quantization Error

Average distance between each data vector and its BMU.

εQ =
1

N

N∑

j=1

‖ xj −wi(xj ) ‖

• Topographic Error

The proportion of all data vectors for which first and second BMUs

are not adjacent units.

εT =
1

N

N∑

j=1

u(xj ),

u(x) = 1 if the 1st and 2nd BMUs are not adjacent

u(x) = 0 otherwise.

78

Example: 2D Input / 2D Output

• Train with uniformly random 2D inputs.

Each input is a point in Cartesian plane.

• Nodes: reference vectors (x and y coordinate).

• Edges: connect immediate neighbors on the map.
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Different 2D Input Distributions

• What would the resulting SOM map look like?

• Why would it look like that?
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High-Dimensional Inputs

SOM Output Space

Input space

SOM can be trained with inputs

of arbitrary dimension.

• Dimensionality reduction:

N-D to 2-D.

• Extracts topological features.

• Used for visualization of data.
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Applications

• Data clustering and visualization.

• Optimization problems:

Traveling salesman problem.

• Semantic maps:

Natural language processing.

• Preprocessing for signal and image-processing.

1. Hand-written character recognition.

2. Phonetic map for speech recognition.
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Exercise

1. What happens when Ni(x) and α was reduced quickly

vs. slowly?

2. How would the map organize if different input distributions are

given?

3. For a fixed number of input vectors from real-world data, a

different visualization scheme is required. How would you use the

number of input vectors that best match each unit to visualize the

property of the map?

83

Key Points

• How can backprop be improved?

• What are the various ways to apply backprop?

• SOM basic algorithm

• What kind of tasks is SOM good for?
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Overview

• SOM demo

• Recurrent networks

• Genetic Algorithms
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SOM Example: Handwritten Digit Recognition

• Preprocessing for feedforward networks (supervised learning).

• Better representation for training.

• Better generalization.
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SOM Demo

Jochen Fröhlich’s Neural Networks with JAVA page:
http://rfhs8012.fh-regensburg.de/ saj39122/jfroehl/diplom/e-index.html

Check out the Sample Applet link.
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SOM Demo: Traveling Salesman Problem

Using Fröhlich’s SOM applet:

• 1D SOM map (1× n, where n is the number of nodes).

• 2D input space.

• Initial neighborhood radius of 8.

• Stop when radius< 0.001.

• Try 50 nodes, 20 input points.

Click on [Parameters] to bring up the config panel. After the

parameters are set, click on [Reset] in the main applet, and then

[Start learning].
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SOM Demo: Space Filling in 2D

Using Fröhlich’s SOM applet:

• 1D SOM map (1× n, where n is the number of nodes).

• 2D input space.

• Initial neighborhood radius of 100.

• Stop when radius< 0.001.

• Try 1000 nodes, and 1000 input points.
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SOM Demo: Space Filling in 3D

Using Fröhlich’s SOM applet:

• 2D SOM map (n× n, where n is the number of nodes).

• 2D input space.

• Initial neighborhood radius of 10.

• Stop when radius< 0.001.

• Try 30× 30 nodes, and 500 input points. Limit the y range to 15.

Also try 50× 50, 1000 input points, and 16 initial radius.
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Recurrent Networks

Connection graph can contain cycles, e.g. reciprocal connections: i.e.

not strictly feed-forward.

• Statistical mechanics based models (associative or

content-addressable memory): Hopfield network, Boltzmann

machines, etc.

• Sequence encoding: Simple Recurrent Network, etc.

• Other biologically motivated networks: laterally connected

self-organizing maps, etc.
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Simple Recurrent Network (Elman Network)

Input

Output

hidden

context

1 step delay

• Sequence encoding.

• Hidden layer activation from previous time step used as input.

• Use standard back-propagation learning.
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SRN Example

Input

Output

hidden

context

1 step delay

Example input and target sequence: output 1 when two 1s appear in a
row.

Time: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

------------------------------------------------------------------

Input: 1 0 1 0 1 1 0 0 0 1 1 1 1 0 1 0 1 1 0 1

Target: 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 1 0 0
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Genetic Algorithms
Population of Genes Selection

f=100

f=5

f=20

f=10

Mating(Crossover)

New Generation

Random Mutation

Evolution as a problem solving strategy:

• population of solutions, where each chromosome represent an individual

• selection based on fitness function: survival of the fittest

• mating (cross-over) and reproduction

• random mutation
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Properties of Genetic Algorithms

• each chromosome encodes a solution

• similar to hill-climbing search

• parallel search

• works for both immediate or delayed reward
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Designing a GA Solution to a Problem

There are many different issues:

• What is the fitness function?

• How is an individual chromosome represented (how to encode)

and what does it represent?

• How are individuals selected?

• How do individuals reproduce?
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Issues in GA: Diversity
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How to maintain diversity:

• Letting only successful ones to reproduce can seriously reduce

the gene pool and an epidemic can wipe out the whole population:

solution can not generalize in new and unexpected conditions.

• Converged population can often times be found at local minima,

not at the global optimum.
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More Issues in GA

• Cross-over strategy: success depends on how genes are

encoded (or represented).

• Not too much theoretical understanding about why it works so

well.

• Crevices in fitness landscape: similar to spikes in hill climbing.

• How to combine learning with evolution.

• How to use cultural leverage.
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GA as a Learning Algorithm

• An individual chromosome may not seem to learn, but when we

look at the evolution of individuals over time, they can be seen as

adapting, and thus learning to cope with the environment.

• If each individual encodes a function rather than a simple

solution, the above point becomes clearer. At each generation,

the parameters in the function can be seen as being adapted.

• Fitness can then be measured by using the function with the

given parameters in specific tasks.
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GA as a Learning Algorithm: Neuroevolution

.....

Genes 

.....

Neural Networks

Evaluation

SelectionMate

Evolving neural networks:

• Genes encode neural networks (connection topology and connection

weights).

• Evaluate, select, and reproduce new population of neural networks.

Problem: individual neurons performing good work may get lost.
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Neuroevolution: Evolving Individual Neurons

EvaluationMate Selection

.....

Genes 

Combine .....

Neural NetworksNeurons

SANE: Moriarty and Miikkulainen

• Genes encode individual neurons.

• Neurons solve sub-problems and the ones that solve the problem

well gets a chance to participate in a network in the next

generation.

• Better diversity is maintained.
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GA Demo

Neuroevolution:

http://www.cs.utexas.edu/users/nn/

• Generation of melodies (Chen and Miikkulainen)

• Gaming AI; harvesters and predators (Stanley and Miikkulainen)

• Non-markovian control (Gomez and Miikkulainen)
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Key Points

• SOM: Try out the effects of different parameters, network size, 1D

or 2D map, neighborhood radius, etc.

• Simple recurrent networks: how can it encode sequences, how is

it different from standard backprop and who similar is it?

• Genetic algorithms basics.

• What are the issues to be solved in genetic algorithms.
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