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Reasoning
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Uncertainty

• Problem with first-order logic: agents almost never have full

access to the whole truth about their environment.

• Therefore, the agent must act under uncertainty.

• Uncertainty can also arise because of incompleteness and

incorrectness in the agent’s understanding of the properties in the

environment.

• Incomplete, because there are too many conditions to explicitly

enumerate.

There are trade-offs (playing safe can result in other annoyances), thus

the right thing to do depends on both the relative importance of various

goals and the likelihood (and degree to which) they will be achieved.
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Example: Trying to Catch a Flight

At: plan to leave home t minutes before the flight departure time.

• The traveler needs to make a decision in an uncertain

environment: car can break down, traffic can be extremely

congested, natural disaster, etc.

• Such worst-case scenarios are hard to explicitly enumerate: the

list goes on – ran out of gas, spouse/children in an emergency,

flight crews goes on a strike, etc. etc.

• Thus the traveler only has an incomplete understanding of the

situation.

• The traveler can play safe by going with planA1440, but this can

cause the traveler to wait for a long time at the airport before

departure.
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Difficulties in Applying F-O-L in Uncertain Domains

For example, application of first-order logic in medical diagnosis

domain can fail because of these reasons:

• Laziness: cannot list the complete set of antecedents and

consequents needed to ensure an exceptionless rule, and too

hard to use the enormous rules that result.

• Theoretical ignorance: medical science has no complete theory.

• Practical ignorance: even though we have all the rules, it is

practically impossible to run all the tests.

Similar situation arises in law, business, dating, etc. The agent’s

knowledge can at best provide only a degree of belief. Probability

theory is well suited for such a domain.
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Acquisition of New Information and Probability

• The degree of belief changes as an agent perceives or acquires

new information from the world: we call this the evidence.

• This is analogous to saying whether or not a given logical

sentence is entailed by (i.e. is a logical consequence of) the

knowledge base, because the truth value can change when new

facts are added to the KB.

• Before the evidence is received, we talk about prior or

unconditional probability.

• After the evidence is obtained, we talk about posterior or

conditional probability.
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Example

When playing black jack,

• as new cards are drawn and shown, your degree of belief in the

fact that you need more cards can change.

What about poker? or slot machine?
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Rational Decisions Under Uncertainty: Decision

Theory

• There are trade-offs, and an agent must first have preferences

between different results when a certain plan was executed.

• Utility theory deals with such preferences: how useful is such

and such result to the agent?

• Decision theory is a general theory of rational decision under

uncertainty, combining probability theory and utility theory.
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Decision Theory

• An agent is rational iff it chooses the action that yields the highest

expected utility, averaged over all possible outcomes of the action:

Principle of Maximum Expected Utility

• Example: backgammon (discussed earlier) – min-max trees with

probabilistic levels.
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Decision Theoretic Agent

function DT-Agent (percept) returns action

static: a set probabilistic belief about the state of the world

calculate updated probabilities for current state based on per-

cept and past actions

calculate outcome probabilities for actions, given action de-

scriptions and prob of current states.

select action with highest expected utility given prob of out-

comes and utility information.

return action
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Decision Theory: Example
Decision theory = Probability theory + Utility theory

Utility of Resulting State Probability

Action 1 10 0.89

100 0.1

1000 0.01

Action 2 10000 0.001

10 0.999

Action 3 100 0.5

10 0.4

1 0.1

Which action would an optimal Decision Theoretic Agent take?
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Decision Theory: Example

Decision theory = Probability theory + Utility theory

Sum of Utility of Resulting State× Probability Expected Utility

Action 1 10× 0.89 + 100× 0.1 + 1000× 0.01 28.9

Action 2 10000× 0.001 + 10× 0.999 19.9

Action 3 100× 0.5 + 10× 0.4 + 1× 0.1 54.1

Action 3 has the maximum expected utility, thus action 3 will be carried

out.
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Probability: Notationsa

• Random variable: variable that can take on different values

– A,B, ...: boolean values (T or F ).

– X,Y, ... : numerical values or other multi-valued

enumerations (1, 2, 0.5, Cloudy, Rainy, Sunny, ...)

• P (X = v) : probability of the variableX having value v.

– This can be viewed as an event.

– For boolean variables, P (A) means P (A = T), and

P (¬A) means P (A = F).

• P(X) : probability distribution, a full list of probabilities for all

possible values thatX can take (note that P is in bold.
aAll conventions follow Russel & Norvig
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Examples

• Boolean:

P (Infected) = 0.01, P (¬Infected) = 0.99.

• Multi valued:

P (Dice = 1) = 1
6
, P (Dice = 2) = 1

6
, ...

• Multi valued:

P (Weather = Sunny) = 0.7,

P (Weather = Rainy) = 0.2, ...
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Logical Connectives and Conditional Probability

• Logical connectives can be used:

P (A ∨B), P (A ∧ ¬B), P (Cavity ∧ ¬Insured), etc.

• Conditional Probability P (A|B) (read probability ofA givenB):

P (Cavity|Toothache) = 0.8

• As new evidence comes in, the conditional probability gets

updated:

P (Cavity|Toothache ∧BadBreath︸ ︷︷ ︸)

15

Conditional Probability

A B

A/\B =P(A|B) = P(A/\B)
P(B)

U

• Think about the area occupied by each event.

• The bounding rectangle U has an area of 1, thus

P (A) =
Area ofA

Area of U
=

Area ofA

1
= Area ofA

• P (A|B) meansB now takes on the role of U . Within this

limited event space, what is the probability ofA.
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The Axioms of Probability

All axioms

1. All probabilities are between 0 and 1

0 ≤ P (A) ≤ 1

2. For a valid proposition A (T under all interpretations):

P (A) = 1, and for a inconsistent proposition A (F under all

interpretations): P (A) = 0.

3. P (A ∨B) = P (A) + P (B)− P (A ∧B)

Other properties follow from these three axioms.
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Other Properties

• From the axioms,

P (A ∨ ¬A) = P (A) + P (¬A)− P (A ∧ ¬A)
P (T) = P (A) + P (¬A)− P (F)

1 = P (A) + P (¬A)
P (¬A) = 1− P (A)

• More generally, the sum of probabilities P (X = v) is 1, for all

values v the random variableX can take:

∑

v∈V
P (X = v)


 = 1,

where V is the set of all possible valuesX can take.
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Joint Probability Distribution

For random variablesX1, X2, ..., Xn,

• An atomic event is an assignment of particular values to each

random variable.

• The joint probability distribution P(X1, X2, ..., Xn)

completely specifies the probabilities of all atomic events.

• Thus,

 ∑

(v1,v2,...,vn)∈V
P (X1 = v1, X2 = v2, ..., Xn = vn)


 = 1,

where V is a set of all possible n−vectors that the vector

(X1, X2, .., Xn) can assume..
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Joint Probability Distribution: Example

Toothache ¬Toothache Sum

Cavity 0.04 0.06 P (C) = 0.1

¬Cavity 0.01 0.89 P (¬C) = 0.9

Sum P (T ) = 0.05 P (¬T ) = 0.95
∑

= 1.0

Abbreviations: C = Cavity, T = Toothache

• P (C ∨ T ) = P (C) + P (T )− P (C ∧ T )

= 0.1 + 0.05− 0.04 = 0.11

• P (C|T ) =
P (C∧T )

P (T )
= 0.04

0.05 = 0.8

• P (T |C) =
P (C∧T )
P (C)

= 0.04
0.1 = 0.5

In practice, writing a full joint probability table like this is impossible (or

too much effort): for n boolean random variables, you need 2n entries.
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Bayes’ Rule

• From P (A|B) =
P (A∧B)
P (B)

and P (B|A) = P (A∧B)
P (A)

, we

get

P (A|B)P (B) = P (B|A)P (A)

and in turn from which we get the Bayes’ Rule:

P (B|A) = P (A|B)P (B)

P (A)
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Extended Bayes’ Rule

P(Y |X,E) =
P(X|Y,E)P(Y |E)

P(X|E)

This rule follows from

P(A,B|E) = P(A|B,E)P(B|E):

P(A,B|E) =
P(A,B,E)

P(E)

=
P(A|B,E)P(B,E)

P(E)

= P(A|B,E)P(B|E)

Note: P(Y |X,E) = P(Y |(X,E︸ ︷︷ ︸)).

Exercise: text book, exercise 14.5b and 14.6 (p. 434).
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Example: Application of Bayes Rule

Exercise 14.3 (p. 433): After your yearly checkup, the doctor has bad

news and good news. The bad news is that you tested positive for a

serious disease, and that the test is 99% accurate (i.e. the probability

of testing positive given that you have the disease is 0.99, as is the

probability of testing negative given you don’t have the disease). The

good news is that this is a rare disease, striking only 1 in 10,000

people. Why is it good news that the disease is rare? What are the

chances that you actually have the disease?

T : tested positive, ¬T : tested negative,D : have disease, ¬D:

clean.
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Solution: Good News and Bad News

These are given:

P (T |D) = 0.99

P (¬T |¬D) = 0.99

P (D) =
1

10, 000
= 0.0001

We want to calculate the probability that you have the disease given a

positive test result:

P (D|T )

We can use Bayes’ rule to derive this probability.
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Solution: Good News and Bad News (cont’d)

P (D|T ) = P (T |D)P (D)

P (T )

• P (T |D) = 0.99, P (¬T |¬D), and P (D) = 0.0001 are

given.

• From these, we can get P (¬T |D) = 0.01,

P (T |¬D) = 0.01, and P (¬D) = 0.9999.

Since P (T |D) and P (D) are give, we only need to calculate P (T ).
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Solution: Good News and Bad News (cont’d)

Observation a: P (T ) = P (T |D)P (D) + P (T |¬D)P (¬D).

Thus, P (T ) = 0.99× 0.0001 + 0.01× 0.9999 = 0.010098,

and with this,

P (D|T ) = 0.99× 0.0001

0.010098
= 0.0098,

which is slightly less than 1%.

Exercise: how accurate should the test be so that P (D|T ) is greater

than 0.95 (i.e. 95%)?

a P (T ) = P (T ∧D) + P (T ∧ ¬D).
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Calculating P (T ) given P (T |D) and P (D)

UD ~D
T ~T

Tested,
+ or −

P (T ) = P (T ∧D) + P (T ∧ ¬D)

= P (T |D)P (D) + P (T |¬D)P (¬D)

• {D} ∪ {¬D} completely account for the whole population, but

{T} ∪ {¬T} does not cover the whole population (because you did

not test everyone!). 27

Calculating P (T ) given P (T |D) and P (D)

Another way of deriving

P (T ) = P (T |D)P (D) + P (T |¬D)P (¬D):

From

P (D|T ) =
P (T |D)P (D)

P (T )

P (¬D|T ) =
P (T |¬D)P (¬D)

P (T )

and from P (D|T ) + P (¬D|T ) = 1,

1 =
P (T |D)P (D)

P (T )
+
P (T |¬D)P (¬D)

P (T )
, thus

P (T ) = P (T |D)P (D) + P (T |¬D)P (¬D)
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Calculating P (T ): General Case

T

X1

X2 X3

X5

X6
X7

X4
More Generally, if

[∑
x∈{x1,x2,...,xn} P (X = x)

]
= 1 and

eventsX = xm andX = xn are disjoint for allm 6= n,

P (T ) =
∑

x∈{x1,x2,...,xn}
P (T |X = x︸ ︷︷ ︸)P (X = x)
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What’s The Big Deal?

• P (T |D) may be easier to obtain: you can run the test on a

small pool of known patients (say 100) at a hospital.

• P (D|T ) is much harder to obtain directly. Since the test makes

1 mistake out of 100 tests, if you run the test on 10,000 people,

you’ll get 100 false-positives, and one genuine patient who tests

positive (consider that P (T ) = 0.010098). So, just to get

about 100 people testing positive, you have to run the tests on

10,000 people.

• P (D) serves as a prior in this case. In many cases, the prior

represents subjective belief of the person calculating the

probability in case P (D) is not directly measurable.
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Key Points

• Application of theorem proving: question answering

• Uncertainty

• Decision theory example: how prob theory and decision theory

are combined

• Probability basics: terminology, notations.

• Joint probability distribution: concept

• Conditional probability: definition, various ways of representing

conditional prob.

• Axioms of probability: basic axioms, and using them to prove

simple equalities.

• Bayes rule: definition and application.
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Overview

• Diagnostic vs. causal knowledge

• Calculating P (T ) given P (T |D) and P (D)

• Ratios of conditional probabilities and causes of an phenomenon

• Example: object recognition

• Bayesian updating
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Diagnostic vs. Causal Knowledge

Consider these probabilities:

• P (Symptom|Disease) : causal knowledge

- relatively fixed.

• P (Disease) : somewhat variable.

• P (Disease|Symptom) : diagnostic knowledge

- fluctuates as P (Disease) change.

P (Disease|Symptom) directly measured can be no longer

accurate when P (Disease) changes (e.g. an epidemic outburst),

however the calculation based on Bayes’ rule can be much more

robust.
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Comparison of Conditional Probabilities

When C1 or C2 can cause phenomenon (or effect)E, to find out the
which is the more probable cause of phenomenonE, we do not need
to explicitly calculate P (E):

• P (C1|E) =
P (E|C1)P (C1)

P (E)

• P (C2|E) =
P (E|C2)P (C2)

P (E)

• From the above, we get:

P (C1|E)

P (C2|E)
=
P (E|C1)P (C1)

P (E|C2)P (C2)
=
a

b
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Example: The Problem of Object Recognition

image 2D 3D
Given an image projected on the retina, what is the more likely cause?

the 2D hexagon? or a transparent 3D cube? This is basically a

computer vision problem.

P (Hexagon|Image)
P (Cube|Image) =

P (Image|Hexagon)P (Hexagon)

P (Image|Cube)P (Cube)
=
a

b

A probabilistic vision agent can make a decision based on such a ratio.
35

Example: Object Recognition (cont’d)

image 2D 3D

P (Hexagon|Image)
P (Cube|Image) =

P (Image|Hexagon)P (Hexagon)

P (Image|Cube)P (Cube)
=
a

b

• Decision: if a/b > 1, it is most likely that a hexagon generated

the image. If a/b < 1, it is most likely that a cube generated the

image.
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Example: Object Recognition (cont’d)

image 2D 3D

P (Hexagon|Image)
P (Cube|Image) =

P (Image|Hexagon)P (Hexagon)

P (Image|Cube)P (Cube)
=
a

b

• Why is P (Image|Hexagon) easier to calculate than

P (Hexagon|Image)?

• What about P (Hexagon) and P (Cube)?
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Combining Multiple Evidences

Suppose we have these conditional probabilities

P (Cavity|Toothache) and P (Cavity|Catch). What if we

want to know P (Cavity|Toothache ∧ Catch︸ ︷︷ ︸)? These are the

alternatives:

• Look up the joint probability table: not practical or even impossible

in most cases

• We can calculate

P (Cav|Ache∧Catch) =
P (Ache ∧ Catch|Cav)P (Cav)

P (Ache ∧ Catch)
but, calculating the new conditional prob and the normalization

factor is a pain.
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Bayesian Updating

An Alternative: gradually work in the multiple evidences – Bayesian

Updating

• Reformulate the Bayes’ rule so that conditional probability of

events given combined evidences (such as P (A|B ∧ C)) are

not necessary.

• Use domain knowledge to replace the more complex conditional

probabilities with known, simpler ones (utilize conditional

independence).

Bayesian updating makes combining evidences efficient (more detail

next time).
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Bayesian Updating: Example

We want to calculate P (Cavity|Ache ∧ Catch):

P (Cav|Ache ∧ Catch) = P (Cav|Ache)P (Catch|Ache ∧ Cav)
P (Catch|Ache)

= P (Cav)
P (Ache|Cav)
P (Ache)

︸ ︷︷ ︸
old

P (Catch|Ache ∧ Cav)
P (Catch|Ache)

︸ ︷︷ ︸
new

Problem is that P (Catch|Ache ∧ Cav) may be equally hard to calculate.

However, we can make these assumptions (Conditional Independence of

Ache andCatch givenCav):

P (Catch|Cav ∧ Ache) = P (Catch|Cav)
P (Ache|Cav ∧ Catch) = P (Ache|Cav)

Only thing that remains is

P (Ache)P (Catch|Ache) = P (Catch ∧ Ache), which can be

eliminated by normalization (Exercise: try this – see Exercise 14.7).40



Bayesian Updating: Example (cont’d)

So, after replacing the factors:

P (Cav|Ache ∧ Catch) = αP (Cav)P (Ache|Cav)
︸ ︷︷ ︸

old

P (Catch|Cav)
︸ ︷︷ ︸

new

,

where α is the normalization constant needed to make

P (Cav|Ache ∧ Catch) add up to 1.

41

Bayesian Updating: Summary

X and Y are independent given Z (conditional independence):

P(X|Y, Z) = P(X|Z)

Simplified Bayes’ rule for multiple evidence isa:

P(Z|X,Y ) = αP(Z)P(X|Z)P(Y |Z),

where α is the normalization constant.

Thus, Bayesian Updating makes combining multiple evidence easy.

a Note: Z is the cause, and X and Y are the effects.
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Key Points

• How is subjective belief utilized in Bayesian analysis?

• Bayesian updating: why does it make probabilistic inference

efficient when multiple evidence comes in?
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Overview

• Belief network

44



Probabilistic Reasoning

Belief Network represent the dependence between random variables,

and give a concise specification of the joint probability distribution. It is

represented as a directed acyclic graph (DAG):

1. a set of random variables : nodes of the network

2. a set of directed edges from one node to another

3. each node has a conditional probability table that quantifies the

effect the parents have on that node. The parents are the nodes

pointing to that node.

4. the graph has no cycles
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Belief Network: Example

Alarm

JohnCalls MaryCalls

Burglary Earthquake

New burglar alarm was installed.

• The alarm can be triggered by either an actual burglary or an

earthquake.

• Neighbors John and Mary agreed to call you at work when they

hear the alarm.
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Belief Network: Example (cont’d)

Alarm

JohnCalls MaryCalls

Burglary Earthquake

Example question: If you got calls from John and Mary, what is the

chance of it being a totally false alarm (not a burglary, nor an

earthquake)?

You can ask any conjunctive combination.
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Belief Network: Example (cont’d)

Alarm

Burglary Earthquake

Each node has a conditional probability table fully describing
P(Current|Parent1, Parent2, ..., Parentn):

Burglary Earthquake P ¬P
T T 0.950 0.050

T F 0.950 0.050

F T 0.290 0.710

F F 0.001 0.999

P= P(Alarm|Burglary, Earthquake)
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Semantics of Belief Networks

Alarm

JohnCalls MaryCalls

Burglary Earthquake

The network can be viewed as

• a representation of the joint probability distribution (this view is

helpful when constructing the network), or

• an encoding of a collection of conditional independence

statements (this view is helpful when designing effective

inference procedures).
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Belief Network: Representing Joint Prob. Dist.

B
T
T
F
F

E
T
F
T
F

P(A)
.95

.29

.001

.001
P(B)

.002
P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

A P(J)
T
F

.90

.05

A P(M)
T
F

.70

.01

.94

Each row in the conditional probability tables are:

P (X1 = x1, ..., Xn = xn) = P (x1, x2, ..., xn)

=
n∏

i=1

P (xi|Parent(Xi))
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Belief Network: Representing Joint Prob. Dist.

(cont’d)

P (X1 = x1, ..., Xn = xn) = P (x1, x2, ..., xn)

=
n∏

i=1

P (xi|Parent(Xi))

Parent(Xj) refers to the event whenXj = xj .

Imagine a case where each node in the example has a T or F assignment. Xj

will then be either T or F for all j.

The belief network fully defines a joint probability distribution!
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Calculating Probability of a Joint Event

Alarm

JohnCalls MaryCalls

Burglary Earthquake

Calculate the probability of the event that the alarm (A) has sounded

but neither a burglary (¬B) nor an earthquake (¬E) occurred, and

both John (J ) and Mary (M ) call:

P (J ∧M ∧ A ∧ ¬B ∧ ¬E)

= P (J|Prnts(J))P (M |Prnts(M))P (A|Prnts(A))P (¬B)P (¬E)

= P (J|A)P (M |A)P (A|¬B ∧ ¬E)P (¬B)P (¬E)

52



Calculating Probability of a Joint Event (cont’d)

B
T
T
F
F

E
T
F
T
F

P(A)
.95

.29

.001

.001
P(B)

.002
P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

A P(J)
T
F

.90

.05

A P(M)
T
F

.70

.01

.94

P (J |A)P (M |A)P (A|¬B ∧ ¬E)P (¬B)P (¬E)

= 0.9× 0.7× 0.001× 0.999× 0.998 = 0.00062
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Key Points

• Belief network: definition, semantics, extracting probabilities of

certain conjunction of events.
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Overview

• Constructing a belief network

• Inference in belief networks

• Knowledge engineering
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Joint Probability Distribution Under Conditional

Independence

In Belief Networks, the joint probability is given as follows:

P (x1, ..., xn) =

N∏

i=1

P (xi|Parents(Xi)).

This is derived from the two following equations:

P (x1, ..., xn) = P (xn|xn−1, ..., x1)P (xn−1, ..., x1)

= P (xn|xn−1, ..., x1)P (xn−1|xx−2, ..., x1)

· · ·P (x2|x1)P (x1)

=
N∏

i=1

P (xi|xi−1, ..., x1) (1)

P(Xi|Xi−1, ..., X1) = P(Xi|Parents(Xi)) (2)
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Belief Network Construction

Given the nodes, we have to find which nodes are directly influenced

by certain nodes, and from this, find out conditional independence.

• For example:
P(MaryCalls|JohnCalls, Alarm,Earthquake,Burglary)
= P(MaryCalls|Alarm)

• So, even ifEarthquake andBurglary can be found

up-stream (e.g.Earthquake causingAlarm to go off, in turn

causingMaryCalls), those events are conditionally

independent fromMaryCalls.

To construct a Belief Network, we need to find such dependency

structure.
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Belief Network Construction (cont’d)

The general procedure for Belief Network construction is as follows:

1. Choose the set of relevant variablesXi that describe the domain.

2. Choose an ordering of the variables.

3. While there are variables left:

(a) Pick a variableXi and add a node to the network for that

variable.

(b) Set Parents(Xi) to some minimal set of nodes already in

the net such that the conditional independence property is

satisfied.

(c) Define the conditional probability table for nodeXi.
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Evaluation of the Construction Algorithm

• Because newly added nodes cannot point to existing nodes, the

resulting graph is always acyclic.

• Violation of axioms of probability is avoided.

• Compact, compared to the full joint probability table (locally

structured, or sparse).

– Belief network with n nodes (binary variables) and k parents

per node has n2k entries in the conditional probability tables:

n nodes× 2k per each node.

– Full joint probability table: 2n
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Importance of Node Ordering in Belief Network

Construction

MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

MaryCalls

JohnCalls

Earthquake

Burglary

Alarm

The resulting Belief Network can be vastly different when the order of
insertion of nodes into the network is different.
• MaryCalls, JohnCalls, Alarm,Burglary, Earthquake

• MaryCalls, JohnCalls, Earthquake,Burglary,Alarm
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Node Ordering and Joint Probability Tables
MaryCalls

JohnCalls

Earthquake

Burglary

Alarm

• Even with different graphs resulting from different node ordering,

you can represent the same joint probability distribution.

• However, some represent the conditional independence relation

much better than others.

• For example, the graph above requires the same number of

entries as a full joint probability table.
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Improper Node Ordering Can Cause Problems
MaryCalls

Alarm

Burglary

Earthquake

JohnCalls

• When adding nodes in the order ofMaryCalls,

JohnCalls, ..., conditional independence does not hold:

P (JohnCalls|MaryCalls) 6= P (JohnCalls)

• Thus,MaryCalls has to become a parent of JohnCalls.

• This is because if Mary calls, it probably means that the alarm

has gone off, so it makes it more likely that John calls.
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Strategy for Better Node Ordering

• For a nodeA to be a parent of another nodeB,A must be

added to the network beforeB is added.

• Thus, a node that has a direct influence on other nodes should be

added to the network first, i.e. add the root causes first.
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Strategy for Better Node Ordering (cont’d)

When building the network, stick to a causal model, rather than the

other way around (e.g. inferring cause given the effect).

Causal model is beneficial because of these reasons:

• conditional probability tables can be made smaller

• the conditional probabilities can be easier to come up with

• easier to reason about the domain using the network
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Probabilistic Inference

• Diagnostic inferences: P (Cause|Effect)

• Causal inferences: P (Effect|Cause)

• Intercausal inferences: causes of a common effect (explaining

away: cause has already been found)

P (Cause|Effect) >> P (Cause|Effect∧OtherCause)

• Mixed inferences: combining two or more of the above

P (A|CauseOfA ∧ EffectOfA)
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Answering Queries: A Brief Outline
x
+E

x
−E

U1 Um

X

Y1 Yn

Given a set of evidence E, find the conditional probability P(X|E)

whereX is the query.

• Recursively deterimine the causal supportE+
X forX .

• Recursively deterimine the evidential supportE−X forX .

Note: This is only when the graph is singly connected.
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Using Belief Networks and Probabilistic Inference

• Making decisions based on the derived probabilities and an

agent’s utility function.

• Deciding which additional variables to include in the model.

• Performing sensitivity analysis to find out which node is most

important and thus should be more accurate.

• Explaining the results of reasoning.
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Knowledge Engineering for Uncertain Reasoning

• Decide what to talk about (i.e. what to be included in the model). Gradually

add more factors that can influence the current collection of events.

• Determine the variables to use and the range of the values.

• Encode general knowledge about the dependence between variables:

1. qualitative: which variable depends on some other variable

2. quantitative: probability value of the dependence (from experience, or

from data gathered from a sample space)

• Encode a description of the specific problem instance: assign values to the

variables.

• Pose queries to the inference procedure and get answers: what is the

probability of X? how sensitive are the values in the conditional probability

tables to perturbations?
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Key Points

• Constructing a belief network: what is the procedure? why does

node ordering matter? how to order the nodes?

• Inference in belief networks: what are the kinds of inference?

what is the general method?

• Knowledge engineering: how to formulate the idea and design a

system.
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