
625-600: Programming Exercise

Read every page very carefully before you begin.

1. Implement deriv to support:

addition, subtraction, unary minus, multiplication, division, sqrt, log, exp,

sin, cos, tan.

→ HINT: use slide02 page 44 as a skeleton.

2. Implement simplification routines splus etc. for all operators and

integrate it into derivplus, etc.

→ HINT: Integrate code in slide02 page 45 into code in page 44. (Code

available on course web page, under the src/ directory.)

3. Write a simple function deriv-eval to assign a numerical value to the

variable and get a single number corresponding to the resulting derivative:

(deriv-eval ’(+ (* x x) (- 2 x)) ’x 20)

* You must use recursion.

4. Write a recursive simplification function simplify that could simplify

expressions like (+ 0 (+ (* x 0) x))

1

Programming Exercise 1: other conditions

1. Use only one variable (say X). Other symbols should be treated

as constants (e.g. Y, Z, ...).

2. All operators should be binary operators:

i.e. expressions like (+ 1 2 3 4 5) do not need to be

supported. Only those in the form of (+ 1 2) are expected to

be used.

3. The only exception is the unary minus operator (- 10), which

only has one argument.

4. You must check for division by zero and print an error message in

case such an event occurs, especially for the deriv-eval

function.

2

Programming Exercise 1: Example Inputs and

Outputs

1. (deriv ’(* (+ x 4) (+ x 5)) ’x)

-> (+ (+ X 4) (+ X 5)))

2. (deriv ’(/ (+ x 1) x) ’x)

-> (/ (- X (+ X 1)) (* X X))

3. (deriv-eval ’(* (+ x 4) (+ x 5)) ’x 10)

-> 29

4. (deriv-eval ’(/ (+ x 1) x) ’x 5)

-> -1/25

3

Programming Exercise 1: Things to Try

• Program code (deriv.lsp): put it in a single text file.

– Ample indentation and documentation is required.

• Sample inputs and outputs

– 10 non-trivial examples, each containing a combination of more than 5

operators. Provide examples for deriv, deriv-eval, and

simplify.

4



Programming Exercise 1: Important Grading

Information

• Since the deriv functions call the simplification functions splus

etc., if the simplification routine is broken, regardless of the deriv

functions being correct, your call will result in an error. If this

happens, both deriv and simplification will be graded as

malfunctioning.

• If you got deriv functions to work, but if simplification is not

working, take out the simplification code from your deriv functions

so that at least your deriv functions work.

5

Programming Exercise 1: Submission

• You don’t need to submit anything.

6

Differentiation rules

c: constant; f(x), g(x): functions of x; Lisp (expt x

y) = xy .

d(f/g)

dx
=

1

g2

(
g

df

dx
− f

dg

dx

)

dfc

dx
= cf

c−1 df

dx
,

d
√

f

dx
=

1

2
√

f

df

dx

d log(f)

dx
=

1

f

df

dx
,

d exp(f)

dx
= exp(f)

df

dx

d sin(f)

dx
= cos(f)

df

dx
,

d cos(f)

dx
= − sin(f)

df

dx

d tan(f)

dx
= (1 + tan

2
(f))

df

dx

7


