CPSC625-600 Midterm Exam (10/14/2010, Thu)¹

Last name: _____, First name: _____

Subject	Score
AI General	/10
Search	/30
Game Playing	/30
Logic	/30
Total	/100

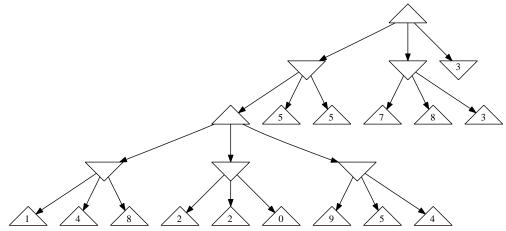
- Be as **succinct** (i.e., brief) as possible.
- Read the questions carefully to see what kind of answer is expected (*explain blah* in terms of ... *blah*).
- Solve all problems.
- Total of 9 pages, including this cover and the Appendix at the end. Before starting, count the pages and see if you have all 9.
- This is a closed book, closed note exam.

¹ Instructor: Yoonsuck Choe.

1 AI, in General

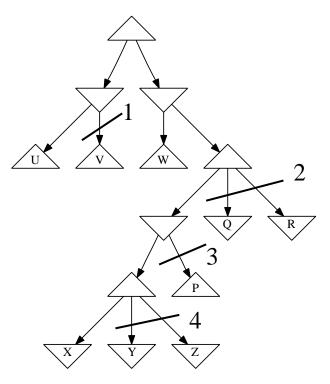
Question 1 (10 pts): Do you think human-level AI is possible in the next 50 years? Explain why or why not. [This is an open question. Any reasonable answer will be fine. **Don't write more than one paragraph**. I expect a scientific answer. Unscientific answers will be given 0.]

2 Search


Question 2 (10 pts): Explain why A^* is generally faster than breadth-first search, considering that both have the same time and space complexity.

Question 3 (10 pts): (1) Explain why IDA*'s space complexity is linear with respect to the maximum depth of the exploration. (2) Explain how IDA*'s space complexity can be measured (it does not keep an explicit node list).

Question 4 (10 pts): In simulated annealing (SA) there are two quantities that are important in determining whether a certain random move will be accepted or rejected when the move results in an increase in energy (note: in SA, the objective is to reduce the energy). (1) What are these and (2) under what conditions are the moves accepted?


3 Game Playing

Question 5 (10 pts): (1) Fill out the utility value in the following Min-Max tree, and (2) show the solution path.

Question 6 (10 pts): Can the following cuts occur? For each of the indicated locations, (1) answer yes (cut can happen) or no (cut cannot happen), and (2) if yes, give an example (e.g., *when* U = 10, V = 5 and ...)

- Cut 1: YES / NO
- Cut 2: YES / NO
- Cut 3: YES / NO
- Cut 4: YES / NO

Question 7 (5 pts): Explain why node ordering is important for efficient alpha-beta pruning.

Question 8 (5 pts): For games with an element of chance, why does the actual magnitude of the utility values matter and not just the rank (ordering)?

4 Logic

Use the laws of logic at the end of the test as necessary (see the last page).

Question 9 (5 pts): (1) Explain how a resolution theorem prover can be used to extract answers to questions like "Who is the father of X?".

Question 10 (10 pts): Explain why the following equality is useful for resolution-based theorem proving: $C_1 \wedge C_2 \wedge ... \wedge C_n = C_1 \wedge C_2 \wedge ... \wedge C_n \wedge H$ where H is a result of resolving a pair of clauses C_i and C_j .

Question 11 (10 pts): Convert the following into prenex normal form, disjunctive normal form, and then skolemize: $\neg \exists x (\neg P(x) \rightarrow \neg (\exists y (Q(x, y) \lor R(y)))).$

Question 12 (5 pts): Given the premises below, show that $A \to E$ is a logical consequence. Use resolution.

- 1. $\neg B \land \neg A$
- 2. $D \lor \neg C \lor B$
- **3**. *C*
- 4. $\neg D \lor E$

No exam questions on this page.

Appendix: Laws of Logic

Note: There is no exam question on this page.

Use the laws of logic below as necessary. You may detach the last page from the test.

- $P \lor Q = Q \lor P$, $P \land Q = Q \land P$ (commutative)
- $(P \lor Q) \lor H = P \lor (Q \lor H),$ $(P \land Q) \land H = P \land (Q \land H),$ (associative)
- $P \lor (Q \land H) = (P \lor Q) \land (P \lor H),$ $P \land (Q \lor H) = (P \land Q) \lor (P \land H)$ (distributive)
- $P \lor \mathbf{False} = P, P \land \mathbf{False} = \mathbf{False}$
- $P \lor \mathbf{True} = \mathbf{True}$ $P \land \mathbf{True} = P$
- $P \lor \neg P =$ **True** $P \land \neg P =$ **False**
- $\neg (P \lor Q) = \neg P \land \neg Q,$ $\neg (P \land Q) = \neg P \lor \neg Q$ (DeMorgan's law)
- $P \rightarrow Q = \neg Q \rightarrow \neg P$ (contrapositive)
- $\bullet \ P \to Q = \neg P \lor Q$
- $(Qx, F(x)) \lor G = Qx, (F(x) \lor G)$ $(Qx, F(x)) \land G = Qx, (F(x) \land G)$
- $\neg(\forall x, F(x)) = \exists x, (\neg F(x))$ $\neg(\exists x, F(x)) = \forall x, (\neg F(x))$
- $(\forall x, F(x)) \land (\forall x, G(x)) = \forall x, (F(x) \land G(x))$ $(\exists x, F(x)) \lor (\exists x, G(x)) = \exists x, (F(x) \lor G(x))$
- $(Q_1x, F(x)) \lor (Q_2x, H(x)) = Q_1x, Q_2z, (F(x) \lor H(z))$ $(Q_1x, F(x)) \land (Q_2x, H(x)) = Q_1x, Q_2z, (F(x) \land H(z))$

These are the common inference rules:

• Modus Ponens:

$$\frac{F \to G, F}{G}$$

• Unit Resolution:

$$\frac{F \lor G, \neg G}{F}$$

• Resolution:

$$\frac{F \lor G, \neg G \lor H}{F \lor H} \ or \ equivalently \ \frac{\neg F \to G, G \to H}{\neg F \to H}$$