CPSC625-600 Midterm Exam (10/10/2007, Wed)¹

Last name: _____, First name: _____

Time: **12:40pm–1:30pm (50 minutes +** α), Total Points: **100**

Subject	Score
AI General	/5
Search	/35
Game Playing	/30
Propositional Logic	/30
Total	/100

- Be as **succinct** (i.e., brief) as possible.
- Read the questions carefully to see what kind of answer is expected (*explain blah* in terms of ... *blah*).
- Solve all problems.
- Total of X pages, including this cover and the Appendix at the end. Before starting, count the pages and see if you have all X.
- This is a closed book, closed note exam.

¹ Instructor: Yoonsuck Choe.

1 AI, in General

Question 1 (5 pts): What do you think is the main obstacle in achieving true AI? [This is an open question. Any reasonable answer will be fine. Don't write more than one paragraph.]

2 Search

Question 2 (5 pts): (1) What is the main drawback of hill-climbing or gradient-based approaches, and (2) how does simulated annealing overcome that?

Question 3 (10 pts): Explain why A* has exponential space complexity, and how IDA* overcomes it.

Question 4 (10 pts): Heuristic functions need to meet a certain condition in order to make A^{*} optimal. (1) What is this condition? and (2) briefly explain why that condition leads to optimality.

Question 5 (10 pts): In Simulated Annealing, there are two different ways to accept (rather than reject) a randomly picked operator (movement direction). (1) What are these two cases (explain in relation to the change in energy ΔE : when $\Delta E \leq 0$ vs. $\Delta E > 0$), and (2) explain how the temperature T affects the decision when ΔE is fixed (accept or reject). (Note: The goal of simulated annealing is to *minimize* the energy.)

3 Game Playing

Question 6 (10 pts): (1) Assign utility values in the following game tree using MIN-MAX search, and (2) draw the solution path.

Question 7 (10 pts): (1) Show the α and β cuts in the following game tree, and (2) draw the solution path.

Question 8 (10 pts): Explain why MIN-MAX gives suboptimal solutions if the players do not play optimally.

4 Propositional Logic

Use the laws of propositional logic at the end of the test as necessary (see the last page).

Question 9 (10 pts): Explain why the following equality is useful for resolution-based theorem proving:

$$C_1 \wedge C_2 \wedge \ldots \wedge C_n = C_1 \wedge C_2 \wedge \ldots \wedge C_n \wedge H$$

where H is a result of resolving a pair of clauses C_i and C_j .

Question 10 (10 pts): Given a knolwedge base and an inference engine (that uses a resolution theorem prover), how would you check if your knowledge base contains any error?

Question 11 (10 pts): Using resolution, show that:

 $(P \land \neg S) \lor R$ is a logical consequence of

- 1. $Q \rightarrow P$
- 2. $Q \lor S \lor P$
- 3. $S \rightarrow R$

First, convert the problem into a form suitable for resolution. Then, show every step of the derivation.

Appendix: Laws of Propositional Logic

Note: There is no exam question on this page.

Use the laws of propositional logic below as necessary. You may detach the last page from the test.

- $P \lor Q = Q \lor P$, $P \land Q = Q \land P$ (commutative)
- $(P \lor Q) \lor H = P \lor (Q \lor H),$ $(P \land Q) \land H = P \land (Q \land H),$ (associative)
- $P \lor (Q \land H) = (P \lor Q) \land (P \lor H),$ $P \land (Q \lor H) = (P \land Q) \lor (P \land H)$ (distributive)
- $P \lor \mathbf{False} = P, P \land \mathbf{False} = \mathbf{False}$
- $P \lor \mathbf{True} = \mathbf{True}$ $P \land \mathbf{True} = P$
- $P \lor \neg P =$ True $P \land \neg P =$ False
- $\neg (P \lor Q) = \neg P \land \neg Q,$ $\neg (P \land Q) = \neg P \lor \neg Q$ (DeMorgan's law)
- $P \rightarrow Q = \neg Q \rightarrow \neg P$ (contrapositive)

•
$$P \to Q = \neg P \lor Q$$

These are the common inference rules:

• Modus Ponens:

$$\frac{F \to G, F}{G}$$

• Unit Resolution:

$$\frac{F \lor G, \neg G}{F}$$

• Resolution:

$$\frac{F \vee G, \neg G \vee H}{F \vee H} \ or \ equivalently \ \frac{\neg F \to G, G \to H}{\neg F \to H}$$