A* Search

- CSCE 420 guest lecture
- Yoonsuck Choe
- September 13, 2016

Recap: General Search Algorithm

Pseudo-code:

```
function General-Search (problem, Que-Fn)
node-list := initial-state
loop begin
    // fail if node-list is empty
    if Empty(node-list) then return FAIL
    // pick a node from node-list
    node := Get-First-Node(node-list)
    // if picked node is a goal node, success!
    if (node == goal) then return as SOLUTION
    // otherwise, expand node and enqueue
    node-list := Que-Fn(node-list, Expand(node))
loop end
```

2

Recap: Evaluation of Search Strategies

1

- time-complexity: how many nodes visited so far?
- space-complexity: how many nodes must be stored in node-list at any given time?
- completeness: if solution exists, guaranteed to be found?
- optimality: guaranteed to find the best solution?

Recap: Best First Search

function Best-First-Search (problem, Eval-Fn)

Queuing-Fn ← sorted list by *Eval-Fn*(node) **return** General-Search(*problem*, *Queuing-Fn*)

- The queuing function queues the expanded nodes, and sorts it every time by the *Eval-Fn* value of each node.
- One of the simplest Eval-Fn: estimated cost to reach the goal.

Recap: Heuristic Function

- h(n) = estimated cost of the cheapest path from the state at node n to a goal state.
- The only requirement is the h(n) = 0 at the goal.
- Heuristics means "to find" or "to discover", or more technically, "how to solve problems" (Polya, 1957).

Recap: Greedy Best-First Search

function Greedy-Best-First Search (problem)

h(n)=estimated cost from n to goal

return Best-First-Search(*problem*,*h*)

• Best-first with heuristic function h(n)

7

A*: Uniform Cost + Heuristic Search

6

Avoid expanding paths that are already found to be expensive:

- f(n) = g(n) + h(n)
- f(n) : estimated cost to goal through node n
- provably complete and optimal!
- restrictions: h(n) should be an admissible heuristic
- admissible heuristic: one that never overestimate the actual cost of the best solution through n

Total Path Cost = 450

A^* Search

function A^* -Search (problem) g(n)=current cost up till nh(n)=estimated cost from n to goal

return Best-First-Search(*problem*,g + h)

• Condition: h(n) must be an **admissible heuristic function**!

9

• A*is optimal!

Behavior of $A^{\ast}\mbox{Search}$

- usually, the *f* value never decreases along a given path: **monotonicity**
- in case it is nonmonotonic, i.e. f(Child) < f(Parent), make this adjustment: f(Child) = max(f(Parent), g(Child) + h(Child)).
- this is called **pathmax**

10

Optimality of A^{\ast}

 G_2 : suboptimal goal in the node-list.

n: unvisited node on a shortest path to goal G_1

- $f(G_2) = g(G_2)$ since $h(G_2) = 0$
- ullet > $g(G_1)$ since G_2 is suboptimal
- $\bullet \ \geq f(n) \text{ since } h \text{ is admissible}$

Since $f(G_2) > f(n)$, A^* will never select G_2 for expansion.

Chapter 4, Sections 1-2, 4 5

Optimality of $A^{\ast} \colon \text{Example}$

- 1. Expansion of parent disallowed: search fails at nodes B, D, and E.
- 2. Expansion of parent allowed: paths through nodes B, D, and E with have an inflated path cost g(n), thus will become nonoptimal.

 $\underbrace{A \to C \to E \to C \to}_{A \to F \to \dots$

inflated path cost

13

Complexity of A^*

 A^* is complete and optimal, but space complexity can become exponential if the heuristic is not good enough.

• condition for **subexponential** growth:

 $|h(n) - h^*(n)| \le O(\log h^*(n)),$ where $h^*(n)$ is the **true** cost from n to the goal.

• that is, error in the estimated cost to reach the goal should be less than even linear, i.e. $< O(h^*(n))$.

Unfortunately, with most heuristics, error is at least proportional with the true cost, i.e. $\geq O(h^*(n)) > O(\log h^*(n))$.

Lemma to Optimality of A^*

Lemma: A^* visits nodes in order of increasing f(n) value.

- Gradually adds f-contours of nodes (cf. BFS adds layers).
- The goal state may have a f value: let's call it f^*
- This means that all nodes with $f < f^*$ will be visited!

14

Linear vs. Logarithmic Growth Error

- Error in heuristic: $|h(n) h^*(n)|$.
- For most heuristics, the error is at least linear.
- For A^* to have subexponential growth, the error in the heuristic should be on the order of $O(\log h^*(n))$.

Problem with \boldsymbol{A}^{*}

Space complexity is usually exponential!

- we need a memory bounded version
- one solution is: Iterative Deepening A^* , or IDA^*

A^* : Evaluation

- Complete : unless there are infinitely many nodes with $f(n) \leq f(G)$
- Time complexity: exponential in (relative error in $h \times {\rm length}$ of solution)
- Space complexity: same as time (keep all nodes in memory)
- Optimal

17

Heuristic Functions: Example

Eight puzzle

5	4		1	2	3
6	1	8	8		4
7	3	2	7	6	5

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total **Manhattan** distance (city block distance)

 $h_1(n)$ = 7 (not counting the blank tile)

 $h_2(n)$ = 2+3+3+2+4+2+0+2 = 18

* Both are admissible heuristic functions.

18

Dominance

If $h_2(n) \ge h_1(n)$ for all n and both are admissible, then we say that $h_2(n)$ dominates $h_1(n)$, and is better for search.

Typical search costs for depth d = 14:

- Iterative Deepening : 3,473,941 nodes visited
- A*(h₁): 539 nodes
- A*(h₂): 113 nodes

Observe that in A^* , every node with $f < f^*$ is visited. Since f = g + h, nodes with $h(n) < f^* - g(n)$ will be visited, so larger h will result in less nodes being visited.

• f^* is the f value for the optimal solution path.

Designing Admissible Heuristics

Relax the problem to obtain an admissible heuristics.

For example, in 8-puzzle:

- allow tiles to move anywhere $ightarrow h_1(n)$
- allow tiles to move to any adjacent location $\rightarrow h_2(n)$

For traveling:

• allow traveler to travel by air, not just by road: SLD

Other Heuristic Design

- Use composite heuristics: $h(n) = max(h_1(n), ..., h_m(n))$
- Use statistical information: random sample *h* and true cost to reach goal. Find out how often *h* and true cost is related.

21

Optional: Iterative Deepening A^* : IDA^*

 A^* is complete and optimal, but the performance is limited by the available space.

- Basic idea: only search within a certain *f* bound, and gradually increase the *f* bound until a solution is found.
- More on IDA^* next time.

22

IDA^*

funct	tion IDA^* (problem)
	$root \leftarrow Make-Node(Initial-State(problem))$
	$f\text{-limit} \leftarrow \text{f-Cost}(\textit{root})$
	loop do
	solution, f-limit ← DFS-Contour(root, f-limit)
	if solution != NULL then return solution
	if <i>f-limit</i> == ∞ then return <i>failure</i>
	end loop

Basically, iterative deepening depth-first-search with depth defined as the $f\operatorname{-cost}(f=g+n)$:

DFS-Contour(root, f-limit)

Find solution from node **root**, within the f-cost limit of **f-limit**. DFS-Contour returns **solution sequence** and **new** f-cost limit.

- if f-cost(**root**) > **f**-limit, return fail.
- if **root** is a goal node, return solution and new f-cost limit.
- recursive call on all successors and return solution and minimum *f*-limit returned by the calls
- return **null solution** and new *f*-limit by default

Similar to the recursive implementation of DFS.

IDA^* : Evaluation

- complete and optimal (with same restrictions as in $A^{\ast})$
- space: proportional to longest path that it explores (because it is depth first!)
- time: dependent on the number of different values h(n) can assume.

25

IDA^* : Time Complexity

Depends on the heuristics:

- small number of possible heuristic function values → small number of *f*-contours to explore → becomes similar to A*
- complex problems: each *f*-contour only contain one new node
 - if $A^* \text{expands } N$ nodes, $IDA^* \text{expands} \\ 1+2+..+N = \frac{N(N+1)}{2} = O(N^2)$
- $\bullet\,$ a possible solution is to have a **fixed** increment ϵ for the f-limit
 - \rightarrow solution will be suboptimal for at most ϵ (ϵ -admissible)

26