
A∗ Search

• CSCE 420 guest lecture

• Yoonsuck Choe

• September 13, 2016

1

Recap: General Search Algorithm

Pseudo-code:

function General-Search (problem, Que-Fn)

node-list := initial-state

loop begin

// fail if node-list is empty

if Empty(node-list) then return FAIL

// pick a node from node-list

node := Get-First-Node(node-list)

// if picked node is a goal node, success!

if (node == goal) then return as SOLUTION

// otherwise, expand node and enqueue

node-list := Que-Fn(node-list, Expand(node))

loop end

2

Recap: Evaluation of Search Strategies

• time-complexity: how many nodes visited so far?

• space-complexity: how many nodes must be stored in node-list at

any given time?

• completeness: if solution exists, guaranteed to be found?

• optimality: guaranteed to find the best solution?

3

Recap: Best First Search

function Best-First-Search (problem, Eval-Fn)

Queuing-Fn← sorted list by Eval-Fn(node)

return General-Search(problem, Queuing-Fn)

• The queuing function queues the expanded nodes, and sorts it

every time by the Eval-Fn value of each node.

• One of the simplest Eval-Fn: estimated cost to reach the goal.

4

Recap: Heuristic Function

• h(n) = estimated cost of the cheapest path from the state at

node n to a goal state.

• The only requirement is the h(n) = 0 at the goal.

• Heuristics means “to find” or “to discover”, or more technically,

“how to solve problems” (Polya, 1957).

5

Recap: Greedy Best-First Search

function Greedy-Best-First Search (problem)

h(n)=estimated cost from n to goal

return Best-First-Search(problem,h)

• Best-first with heuristic function h(n)

6

� ��� ��� ��� 	 ��
� ��
���� ������
� ��� ���

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straight−line distance
to Bucharest

 0
160
242
161

77
151

241

366

193

178

253
329

80
199

244

380

226

234

374

98

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

���������! "$#&%('*)+,�!-/.&021/-43�.&'/'/%5 $ &026&#�78%(-/%51:9�;21/<!"$=&>&?5@A@2B C4D&02EF-G%(1IHF>J�!%) -/"$;26&'K?MLJN!>2H O

Total Path Cost = 450

Greedy

329

253
178

193

160

98

380

374

7

A∗: Uniform Cost + Heuristic Search

Avoid expanding paths that are already found to be expensive:

• f(n) = g(n) + h(n)

• f(n) : estimated cost to goal through node n

• provably complete and optimal!

• restrictions: h(n) should be an admissible heuristic

• admissible heuristic: one that never overestimate the actual cost

of the best solution through n

8

A∗Search

function A∗-Search (problem)

g(n)=current cost up till n

h(n)=estimated cost from n to goal

return Best-First-Search(problem,g + h)

• Condition: h(n) must be an admissible heuristic function!

• A∗ is optimal!

9

Behavior of A∗Search

• usually, the f value never decreases along a given path:

monotonicity

• in case it is nonmonotonic, i.e. f(Child) < f(Parent),

make this adjustment:

f(Child) = max(f(Parent), g(Child) + h(Child)).

• this is called pathmax

10

� ��� ��� ��� 	 ��
� ��
���� ������
� ��� ���

Bucharest

Giurgiu

Urziceni

Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj
Mehadia

Dobreta
Craiova

Sibiu

Fagaras

Pitesti
Rimnicu Vilcea

Vaslui

Iasi

Straight−line distance
to Bucharest

 0
160
242
161

77
151

241

366

193

178

253
329

80
199

244

380

226

234

374

98

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

���������! "$#&%('*)+,�!-/.&021/-43�.&'/'/%5 $ &026&#�78%(-/%51:9�;21/<!"$=&>&?5@A@2B C4D&02EF-G%(1IHF>J�!%) -/"$;26&'K?MLJN!>2H O

393

447

417

413

415

526

418

671
449

Total Path Cost = 418

A*

178

160

98

253

329
193

380
374

11

Optimality of A∗

G2: suboptimal goal in the node-list.

n: unvisited node on a shortest path to goalG1

• f(G2) = g(G2) since h(G2) = 0

• > g(G1) sinceG2 is suboptimal

• ≥ f(n) since h is admissible

Since f(G2) > f(n), A∗will never selectG2 for expansion.

12

Optimality of A∗: Example

A
B

C
E

I

H

G

F

D

1. Expansion of parent disallowed: search fails at nodes B, D,

and E.

2. Expansion of parent allowed: paths through nodes B, D, and E

with have an inflated path cost g(n), thus will become

nonoptimal.

A→ C → E → C →︸ ︷︷ ︸
inflated path cost

A→ F → ...

13

Lemma to Optimality of A∗

Lemma: A∗visits nodes in order of increasing f(n) value.

• Gradually adds f-contours of nodes (cf. BFS adds layers).

• The goal state may have a f value: let’s call it f∗

• This means that all nodes with f < f∗ will be visited!

14

Complexity of A∗

A∗ is complete and optimal, but space complexity can become

exponential if the heuristic is not good enough.

• condition for subexponential growth:

|h(n)− h∗(n)| ≤ O(logh∗(n)),

where h∗(n) is the true cost from n to the goal.

• that is, error in the estimated cost to reach the goal should be less

than even linear, i.e.< O(h∗(n)).

Unfortunately, with most heuristics, error is at least proportional with

the true cost, i.e.≥ O(h∗(n)) > O(logh∗(n)).

15

Linear vs. Logarithmic Growth Error

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

x
log(x)

• Error in heuristic: |h(n)− h∗(n)|.
• For most heuristics, the error is at least linear.

• For A∗to have subexponential growth, the error in the heuristic

should be on the order ofO(logh∗(n)).

16

Problem with A∗

Space complexity is usually exponential!

• we need a memory bounded version

• one solution is: Iterative Deepening A∗, or IDA∗

17

A∗: Evaluation

• Complete : unless there are infinitely many nodes with

f(n) ≤ f(G)

• Time complexity: exponential in (relative error in h× length of

solution)

• Space complexity: same as time (keep all nodes in memory)

• Optimal

18

Heuristic Functions: Example

Eight puzzle

5 4

6 1 8

7 3 2

1 2 3

8 4

7 6 5

• h1(n) = number of misplaced tiles

• h2(n) = total Manhattan distance (city block distance)

h1(n) = 7 (not counting the blank tile)

h2(n) = 2+3+3+2+4+2+0+2 = 18

* Both are admissible heuristic functions.

19

Dominance

If h2(n) ≥ h1(n) for all n and both are admissible, then we say that

h2(n) dominates h1(n), and is better for search.

Typical search costs for depth d = 14:

• Iterative Deepening : 3,473,941 nodes visited

• A∗(h1): 539 nodes

• A∗(h2): 113 nodes

Observe that in A∗, every node with f < f∗ is visited. Since

f = g + h, nodes with h(n) < f∗ − g(n) will be visited, so larger

h will result in less nodes being visited.

• f∗ is the f value for the optimal solution path.

20

Designing Admissible Heuristics

Relax the problem to obtain an admissible heuristics.

For example, in 8-puzzle:

• allow tiles to move anywhere→ h1(n)

• allow tiles to move to any adjacent location→ h2(n)

For traveling:

• allow traveler to travel by air, not just by road: SLD

21

Other Heuristic Design

• Use composite heuristics: h(n) = max(h1(n), ..., hm(n))

• Use statistical information: random sample h and true cost to

reach goal. Find out how often h and true cost is related.

22

Optional: Iterative Deepening A∗: IDA∗

A∗ is complete and optimal, but the performance is limited by the

available space.

• Basic idea: only search within a certain f bound, and gradually

increase the f bound until a solution is found.

• More on IDA∗ next time.

23

IDA∗

function IDA∗(problem)

root← Make-Node(Initial-State(problem))

f-limit← f-Cost(root)

loop do

solution, f-limit← DFS-Contour(root, f-limit)

if solution != NULL then return solution

if f-limit ==∞ then return failure

end loop

Basically, iterative deepening depth-first-search with depth defined as

the f -cost (f = g + n):

24

DFS-Contour(root, f-limit)

Find solution from node root, within the f -cost limit of f-limit.

DFS-Contour returns solution sequence and new f -cost limit.

• if f -cost(root)> f-limit, return fail.

• if root is a goal node, return solution and new f -cost limit.

• recursive call on all successors and return solution and

minimum f -limit returned by the calls

• return null solution and new f -limit by default

Similar to the recursive implementation of DFS.

25

IDA∗: Evaluation

• complete and optimal (with same restrictions as in A∗)

• space: proportional to longest path that it explores (because it is

depth first!)

• time: dependent on the number of different values h(n) can

assume.

26

IDA∗: Time Complexity

Depends on the heuristics:

• small number of possible heuristic function values→ small

number of f -contours to explore→ becomes similar to A∗

• complex problems: each f -contour only contain one new node

if A∗expandsN nodes,

IDA∗expands

1 + 2 + ..+N =
N(N+1)

2
= O(N2)

• a possible solution is to have a fixed increment ε for the f -limit

→ solution will be suboptimal for at most ε (ε-admissible)

27

