A" Search

e CSCE 420 guest lecture
e Yoonsuck Choe

e September 13, 2016

Recap: Evaluation of Search Strategies

e time-complexity: how many nodes visited so far?

® space-complexity: how many nodes must be stored in node-list at

any given time?
o completeness: if solution exists, guaranteed to be found?

e optimality: guaranteed to find the best solution?

Recap: General Search Algorithm
Pseudo-code:

function General-Search (problem, Que-Fn)
node-list := initial-state
loop begin
// fail if node-list is empty
if Empty(node-1list) then return FAIL
// pick a node from node-list
node := Get-First-Node (node-1list)

// if picked node is a goal node, success!
if (node == goal) then return as SOLUTION

// otherwise, expand node and engqueue

node-1list := Que-Fn(node-list, Expand(node))

loop end

Recap: Best First Search

function Best-First-Search (problem, Eval-Fn)

Queuing-Fn <— sorted list by Eval-Fn(node)
return General-Search(problem, Queuing-Fn)

e The queuing function queues the expanded nodes, and sorts it
every time by the Eval-Fn value of each node.

e One of the simplest Eval-Fn: estimated cost to reach the goal.

Recap: Heuristic Function
e h(n) = estimated cost of the cheapest path from the state at
node 1 to a goal state.
e The only requirement is the h(n) = 0 at the goal.

e Heuristics means “to find” or “to discover”, or more technically,

“how to solve problems” (Polya, 1957).

| Romania with step costs in km |

380
3 Greedy

to Bucharest
3 7 4 Arad
i Bucharest

5 ’ Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi
Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Eforie Yaslui

1 6 0 Zerind

Total Path Cost = 450
7

ATMA Slides @Stuart Russell and Peter Norvig, 1998 Chapter 4, Sections 1-2,4 5

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

Recap: Greedy Best-First Search

function Greedy-Best-First Search (problem)

h(n)=estimated cost from 7 to goal
return Best-First-Search(problem, h)

e Best-first with heuristic function /()

A*: Uniform Cost + Heuristic Search

Avoid expanding paths that are already found to be expensive:

e f(n)=g(n)+ h(n)

e f(n): estimated cost to goal through node 7

provably complete and optimal!

restrictions: /(n) should be an admissible heuristic

admissible heuristic: one that never overestimate the actual cost

of the best solution through 1

A*Search

function A *-Search (problem)

g(n)=current cost up till n
h(n)=estimated cost from 7 to goal
return Best-First-Search(problem,g + h)

e Condition: i (n) must be an admissible heuristic function!

o A*is optimal!

| Romania with step costs in km

Straight-line distance

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

Total Path Cost =418

11

ATMA Slides @Stuart Russell and Peter Norvig, 1998

pter 4, Sections 1-2,4 5

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

Behavior of A*Search
e usually, the f value never decreases along a given path:
monotonicity

e incase it is nonmonotonic, i.e. f(Child) < f(Parent),

make this adjustment:
f(Child) = max(f(Parent), g(Child) + h(Child)).

e this is called pathmax

10

Optimality of A*

(72 suboptimal goal in the node-list.
n: unvisited node on a shortest path to goal G¢

o f(G2) = g(G2)since h(G2) =0
e > g(G1) since G2 is suboptimal
e > f(n) since h is admissible

Since f(G2) > f(n), A*will never select G2 for expansion.

12

Optimality of A™: Example Lemma to Optimality of A*

Lemma: A *visits nodes in order of increasing f(n) value.
e Gradually adds f-contours of nodes (cf. BFS adds layers).

e The goal state may have a f value: let's call it f*

e This means that all nodes with /< f™ will be visited!
1. Expansion of parent disallowed: search fails at nodes B, D,
and E.

2. Expansion of parent allowed: paths through nodes B, D, and E
with have an inflated path cost g(n), thus will become
nonoptimal.

<4—>C%E—>C—;A—>F—>...

-~

inflated path cost

13 14
Complexity of A* Linear vs. Logarithmic Growth Error
10 x‘
A*is complete and optimal, but space complexity can become 0G (%) mpsom |

gl
exponential if the heuristic is not good enough.
ol

e condition for subexponential growth:
[h(n) = h*(n)| < O(logh*(n)),
where ™ (n) is the true cost from 7 to the goal.

e thatis, error in the estimated cost to reach the goal should be less
than even linear, i.e. < O(h*(n)). e Errorin heuristic: |h(n) — h*(n)].

Unfortunately, with most heuristics, error is at least proportional with e For most heuristics, the error is at least linear.

. * *
the true cost, ie. > O(h*(n)) > O(logh™ (n)). e For A™to have subexponential growth, the error in the heuristic

should be on the order of O (logh™(n)).

15 16

Problem with A *

Space complexity is usually exponential!
® we need a memory bounded version

e one solution is: Iterative Deepening A™, or /DA™

17

Heuristic Functions: Example

Eight puzzle
5| 4 1 2|3
6 | 1 8 8 4
713]2 7|16]|5

e h1(n) =number of misplaced tiles

total Manhattan distance (city block distance)

h1
ha

n) = 7 (not counting the blank tile)

= 2+3+3+2+4+2+0+2 = 18

(n)
ha(n)
(n) =
(n)

* Both are admissible heuristic functions.

19

A*: Evaluation

e Complete : unless there are infinitely many nodes with
f(n) < f(G)
e Time complexity: exponential in (relative error in h X length of
solution)
e Space complexity: same as time (keep all nodes in memory)
e Optimal

18

Dominance

If ho(n) > hi(n) for all n and both are admissible, then we say that
h2(n) dominates A1 (n), and is better for search.
Typical search costs for depth d = 14:

e |terative Deepening : 3,473,941 nodes visited

e A*(h1): 539 nodes

e A*(h2): 113 nodes

Observe that in A™, every node with f < f™ is visited. Since
f = g+ h,nodes with h(n) < f* — g(n) will be visited, so larger
h will result in less nodes being visited.

e ™ isthe f value for the optimal solution path.

20

Designing Admissible Heuristics

Relax the problem to obtain an admissible heuristics.
For example, in 8-puzzle:

e allow tiles to move anywhere — h1(n)

e allow tiles to move to any adjacent location — ho (7))
For traveling:

e allow traveler to travel by air, not just by road: SLD

21

Optional: Iterative Deepening A*: /D A*
A* is complete and optimal, but the performance is limited by the
available space.

e Basic idea: only search within a certain f bound, and gradually
increase the f bound until a solution is found.

e More on I DA™ next time.

23

Other Heuristic Design

e Use composite heuristics: h(n) = max(hi(n), ..., hm(n))

e Use statistical information: random sample / and true cost to
reach goal. Find out how often h and true cost is related.

22

IDA*

function 1 D A™ (problem)

root <— Make-Node(Initial-State(problem))
f-limit <— f-Cost(root)

loop do

solution, f-limit <— DFS-Contour(root, f-limi)
if solution = NULL then return solution

if f-limit == oo then return failure

end loop

Basically, iterative deepening depth-first-search with depth defined as
the f-cost (f = g + n):

24

DFS-Contour(root, f-limit)
Find solution from node root, within the f-cost limit of f-limit.
DFS-Contour returns solution sequence and new f-cost limit.
e if f-cost(root) > f-limit, return fail.
e if root is a goal node, return solution and new f-cost limit.

® recursive call on all successors and return solution and
minimum f-limit returned by the calls

e return null solution and new f-limit by default

Similar to the recursive implementation of DFS.

25

I D A*: Time Complexity

Depends on the heuristics:

e small number of possible heuristic function values — small
number of f-contours to explore — becomes similar to A ™
e complex problems: each f-contour only contain one new node

if A*expands /N nodes,
1D A*expands
142+ ..+ N =YD — o(N2)

e a possible solution is to have a fixed increment € for the f-limit
— solution will be suboptimal for at most € (e-admissible)

27

[D A*: Evaluation

complete and optimal (with same restrictions as in A ™)

space: proportional to longest path that it explores (because it is
depth first!)

time: dependent on the number of different values h(n) can

assume.

26

