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Recap: General Search Algorithm

Pseudo-code:

function General-Search (problem, Que-Fn)

node-list := initial-state

loop begin

// fail if node-list is empty

if Empty(node-list) then return FAIL

// pick a node from node-list

node := Get-First-Node(node-list)

// if picked node is a goal node, success!

if (node == goal) then return as SOLUTION

// otherwise, expand node and enqueue

node-list := Que-Fn(node-list, Expand(node))

loop end
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Recap: Evaluation of Search Strategies

• time-complexity: how many nodes visited so far?

• space-complexity: how many nodes must be stored in node-list at

any given time?

• completeness: if solution exists, guaranteed to be found?

• optimality: guaranteed to find the best solution?
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Recap: Best First Search

function Best-First-Search (problem, Eval-Fn)

Queuing-Fn← sorted list by Eval-Fn(node)

return General-Search(problem, Queuing-Fn)

• The queuing function queues the expanded nodes, and sorts it

every time by the Eval-Fn value of each node.

• One of the simplest Eval-Fn: estimated cost to reach the goal.
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Recap: Heuristic Function

• h(n) = estimated cost of the cheapest path from the state at

node n to a goal state.

• The only requirement is the h(n) = 0 at the goal.

• Heuristics means “to find” or “to discover”, or more technically,

“how to solve problems” (Polya, 1957).
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Recap: Greedy Best-First Search

function Greedy-Best-First Search (problem)

h(n)=estimated cost from n to goal

return Best-First-Search(problem,h)

• Best-first with heuristic function h(n)
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A∗: Uniform Cost + Heuristic Search

Avoid expanding paths that are already found to be expensive:

• f(n) = g(n) + h(n)

• f(n) : estimated cost to goal through node n

• provably complete and optimal!

• restrictions: h(n) should be an admissible heuristic

• admissible heuristic: one that never overestimate the actual cost

of the best solution through n
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A∗Search

function A∗-Search (problem)

g(n)=current cost up till n

h(n)=estimated cost from n to goal

return Best-First-Search(problem,g + h)

• Condition: h(n) must be an admissible heuristic function!

• A∗ is optimal!
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Behavior of A∗Search

• usually, the f value never decreases along a given path:

monotonicity

• in case it is nonmonotonic, i.e. f(Child) < f(Parent),

make this adjustment:

f(Child) = max(f(Parent), g(Child) + h(Child)).

• this is called pathmax
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Optimality of A∗

G2: suboptimal goal in the node-list.

n: unvisited node on a shortest path to goalG1

• f(G2) = g(G2) since h(G2) = 0

• > g(G1) sinceG2 is suboptimal

• ≥ f(n) since h is admissible

Since f(G2) > f(n), A∗will never selectG2 for expansion.
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Optimality of A∗: Example

A
B

C
E

I

H

G

F

D

1. Expansion of parent disallowed: search fails at nodes B, D,

and E.

2. Expansion of parent allowed: paths through nodes B, D, and E

with have an inflated path cost g(n), thus will become

nonoptimal.

A→ C → E → C →︸ ︷︷ ︸
inflated path cost

A→ F → ...
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Lemma to Optimality of A∗

Lemma: A∗visits nodes in order of increasing f(n) value.

• Gradually adds f-contours of nodes (cf. BFS adds layers).

• The goal state may have a f value: let’s call it f∗

• This means that all nodes with f < f∗ will be visited!
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Complexity of A∗

A∗ is complete and optimal, but space complexity can become

exponential if the heuristic is not good enough.

• condition for subexponential growth:

|h(n)− h∗(n)| ≤ O(logh∗(n)),

where h∗(n) is the true cost from n to the goal.

• that is, error in the estimated cost to reach the goal should be less

than even linear, i.e.< O(h∗(n)).

Unfortunately, with most heuristics, error is at least proportional with

the true cost, i.e.≥ O(h∗(n)) > O(logh∗(n)).
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Linear vs. Logarithmic Growth Error
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• Error in heuristic: |h(n)− h∗(n)|.
• For most heuristics, the error is at least linear.

• For A∗to have subexponential growth, the error in the heuristic

should be on the order ofO(logh∗(n)).
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Problem with A∗

Space complexity is usually exponential!

• we need a memory bounded version

• one solution is: Iterative Deepening A∗, or IDA∗
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A∗: Evaluation

• Complete : unless there are infinitely many nodes with

f(n) ≤ f(G)

• Time complexity: exponential in (relative error in h× length of

solution)

• Space complexity: same as time (keep all nodes in memory)

• Optimal
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Heuristic Functions: Example

Eight puzzle

5 4

6 1 8

7 3 2

1 2 3

8 4

7 6 5

• h1(n) = number of misplaced tiles

• h2(n) = total Manhattan distance (city block distance)

h1(n) = 7 (not counting the blank tile)

h2(n) = 2+3+3+2+4+2+0+2 = 18

* Both are admissible heuristic functions.
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Dominance

If h2(n) ≥ h1(n) for all n and both are admissible, then we say that

h2(n) dominates h1(n), and is better for search.

Typical search costs for depth d = 14:

• Iterative Deepening : 3,473,941 nodes visited

• A∗(h1): 539 nodes

• A∗(h2): 113 nodes

Observe that in A∗, every node with f < f∗ is visited. Since

f = g + h, nodes with h(n) < f∗ − g(n) will be visited, so larger

h will result in less nodes being visited.

• f∗ is the f value for the optimal solution path.
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Designing Admissible Heuristics

Relax the problem to obtain an admissible heuristics.

For example, in 8-puzzle:

• allow tiles to move anywhere→ h1(n)

• allow tiles to move to any adjacent location→ h2(n)

For traveling:

• allow traveler to travel by air, not just by road: SLD
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Other Heuristic Design

• Use composite heuristics: h(n) = max(h1(n), ..., hm(n))

• Use statistical information: random sample h and true cost to

reach goal. Find out how often h and true cost is related.
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Optional: Iterative Deepening A∗: IDA∗

A∗ is complete and optimal, but the performance is limited by the

available space.

• Basic idea: only search within a certain f bound, and gradually

increase the f bound until a solution is found.

• More on IDA∗ next time.
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IDA∗

function IDA∗(problem)

root← Make-Node(Initial-State(problem))

f-limit← f-Cost(root)

loop do

solution, f-limit← DFS-Contour(root, f-limit)

if solution != NULL then return solution

if f-limit ==∞ then return failure

end loop

Basically, iterative deepening depth-first-search with depth defined as

the f -cost (f = g + n):
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DFS-Contour(root, f-limit)

Find solution from node root, within the f -cost limit of f-limit.

DFS-Contour returns solution sequence and new f -cost limit.

• if f -cost(root)> f-limit, return fail.

• if root is a goal node, return solution and new f -cost limit.

• recursive call on all successors and return solution and

minimum f -limit returned by the calls

• return null solution and new f -limit by default

Similar to the recursive implementation of DFS.
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IDA∗: Evaluation

• complete and optimal (with same restrictions as in A∗)

• space: proportional to longest path that it explores (because it is

depth first!)

• time: dependent on the number of different values h(n) can

assume.
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IDA∗: Time Complexity

Depends on the heuristics:

• small number of possible heuristic function values→ small

number of f -contours to explore→ becomes similar to A∗

• complex problems: each f -contour only contain one new node

if A∗expandsN nodes,

IDA∗expands

1 + 2 + ..+N =
N(N+1)

2
= O(N2)

• a possible solution is to have a fixed increment ε for the f -limit

→ solution will be suboptimal for at most ε (ε-admissible)
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