Slide09 Introduction

Haykin Chapter 6: Suppo rt-Vector e Support vector machine is a linear machine with some very nice

properties.

Machines

e The basic idea of SVM is to construct a separating hyperplane
where the margin of separation between positive and negative

CPSC 636-600 examples are maximized.

Instructor: Yoonsuck Choe o o ) L
) e Principled derivation: structural risk minimization
Spring 2015
— error rate is bounded by: (1) training error-rate and (2)
VC-dimension of the model.
— SVM makes (1) become zero and minimizes (2).
Note: Part of this lecture drew material from Ricardo Gutierrez-Osuna’s Pattern
Analysis lectures.
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Optimal Hyperplane Distance to the Optimal Hyperplane
For linearly separable patterns { (x;, di)}fil (with
d; € {-I—l, —1}): et
® The separating hyperplane is wlix+b=0: *
wlix+b>0 ford; = +1
wlix+b<0 ford; = —1 T
v e Fromw_ X = —b,, the distance from the origin to the hyperplane is
e Let w,, be the optimal hyperplane and b,, the optimal bias. calculated as
—b,
d = ||x;]| cos(x;, wy) =
[woll



Distance to the Optimal Hyperplane (cont’d)

e The distance from an arbitrary point to the hyperplane can be calculated as:

— When the point is in the positive area:

XTWO b, xTwo -+ b,

r = ||z|| cos(x, w,)—d = =
Iwoll  llwoll [wo |l

— When the point is in the negative area:

T T
xTw b X W, +0b
r = d—||z]| cos(x, w,) = o °© - _ o T 7o

[woll - llwoll [woll
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Optimal Hyperplane and Support Vectors (cont’d)

® The optimal hyperplane is supposed to maximize the margin of
separation p.

e With that requirement, we can write the conditions that w, and
bo must meet:

wlx +b, > +1 ford; = +1

wlx +b, < —1 ford; = —1

Note: > +1 and < —1, and support vectors are those x ()
where equality holds (i.e., w. x(%) 4 b, = +1 or —1).

e Sincer = (W.x +bo)/||wo

’

1/|lwoll ifd=+1
—1/[|wo|| itd=—-1

7

Optimal Hyperplane and Support Vectors

O e
L

Support Vlectors

e Support vectors: input points closest to the separating
hyperplane.

e Margin of separation p: distance between the separating
hyperplane and the closest input point.

Optimal Hyperplane and Support Vectors (cont’d)

’
7 { |

Support Vlectors

e Margin of separation between two classes is
2

[woll

p:z'}":

e Thus, maximizing the margin of separation between two classes

is equivalent to minimizing the Euclidean norm of the weight w !
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Primal Problem: Constrained Optimization

For the training set 7 = {(x;,d;)}}Y_, find w and b such that
e they minimize a certain value (1/,0) while satisfying a constraint
(all examples are correctly classified):
— Constraint: d; (W' x; +b) > 1fori =1,2,..., N.

- Cost function: (w) = %WTW.

This problem can be solved using the method of Lagrange multipliers
(see next two slides).

Lagrange Multipliers (cont’d)

Must find «, vy, ¢ that minimizes
F(z,y,a) = (x —2)? + (y — 2)%? + a(z? + y? — 1). Setthe
partial derivatives to 0, and solve the system of equations.

oOF

— =2(x—2)+2ax=0
ox

oOF

= =2y —2)+2ay =0
9y

oOF
—:xz—i—yQ—l:O
I5Je"

Solve for x and y in the 1st and 2nd, and plug in those to the 3rd equation

v=rie e () +(i5a) =
m—y—1+a, 5 1+ « 1+ « N

from which we get o = 2v/2 — 1. Thus, (z,vy) = (1/v/2,1//2).
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Mathematical Aside: Lagrange Multipliers

Turn a constrained optimization problem into an unconstrained
optimization problem by absorbing the constraints into the cost
function, weighted by the Lagrange multipliers.

Example: Find closest point on the circle x? + y2 = 1 to the point

(2, 3) (adapted from Ballard, An Introduction to Natural Computation,
1997, pp. 119-120).

e Minimize F'(z,vy) = (x — 2)? + (y — 3)? subject to the
constraint 22 + 2 — 1 = 0.

e Absorb the constraint into the cost function, after multiplying the
Lagrange multiplier c:

Fz,y,a) = (z —2)* + (y — 3)> + a(z® + y* — 1).
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Primal Problem: Constrained Optimization (cont’d)

Putting the constrained optimization problem into the Lagrangian form,
we get (utilizing the Kunh-Tucker theorem)

N
J(w,b,a) = %WTW — Z@i [di(WTXi +b) — 1} )
1=1

e From —8‘](;’"’\5)’0‘) =0
N
W = Z Oéidz'XZ'.
=1
e From —a‘](géb’a) = 0:

N
Z aidi =0
=1
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Primal Problem: Constrained Optimization (cont’d) Primal Problem: Constrained Optimization (cont’d)

e Plugginginw = Z ~, aidiX; andz ~, a;d; = 0 backinto

e Note that when the optimal solution is reached, the following J(w, b, ), we get the dual problem.
condition must hold (Karush-Kuhn-Tucker complementary 5 ) L N . (wT )
it sy Uy — 9 - i 7 3 7 - 1]
condition) (w, b, a) fw Wi [ (Wi +b)
= d; i
a; |:di<WTXi+b)_1} =0 aW W= 3 ediw
—b Z ~q oid; + Z MPe
foralle = 1,2,..., N. {notlnngW: SN aidiwT
e Thus, non-zero cv;s can be attained only when and from Zf\;l a;d; = 0}
[d;(wT'x; +b) — 1] = 0, i.e., when the c; is associated = —% SN aidiwTx; + Zf\il o
with a support vector x(8)) = —3 Z Zj—l ajojdidg X Xj + Z =1 %

Q).

e So, J(w,b,a) = Q(a) (ax; > 0).

e Other conditions include c; > 0.

e This results in the dual problem (next slide).
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Dual Problem Solution to the Optimization Problem

N Once all the optimal Lagrange mulitpliers v, ; are found, w, and b,
e Given the training sample { (x;, d;) };" , find the Lagrange

N can be found as follows:
multipliers {cv; };* | that maximize the objective function:

N
Wo = Z Qo,idiX;
Qo) = ZZaajddx XJ—I—ZOéZ i=1
2_1 j=1 and from WZXI' + b, = d; when x; is a support vector:
subject to the constraints b, = d(s) B WOTX(S)
- Zf\]:1 a;d; =0
- a; > Oforalle =1,2,..., N.

Note: calculation of final estimated function does not need any explicit
calculation of w, since they can be calculated from the dot product

e The problem is stated entirely in terms of the training data between the input vectors!
(x4, d;), and the dot products x?xj play a key role. N
ng = Z ao7idix?x
i=1
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Margin of Separation in SVM and VC Dimension

Statistical learning theory shows that it is desirable to reduce both the
error (empirical risk) and the VC dimension of the classifier.

e Vapnik (1995, 1998) showed: Let D be the diameter of the
smallest ball containing all input vectors x;. The set of optimal
hyperplanes defined by w x + b, = 0 has a VC dimension h
bounded from above as

D2
hgmm{[—J ,mo}—i—l
P

where |- | is the ceiling, p the margin of separation equal to
2/||wo||, and mq the dimensionality of the input space.

e The implication is that the VC dimension can be controlled
independetly of m(, by choosing an appropriate (large) p!
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Soft-Margin Classification (cont’d)

o We want to find a separating hyperplane that minimizes:

N

®() = S I(6 — 1)

=1
where I(£) = 0if & < 0 and 1 otherwise.

® Solving the above is NP-complete, so we instead solve an approximation:

N
o(§) = Z&

o Furthermore, the weight vector can be factored in:

N
1
®(x,&) = §WTW + CE &
N—— =1 B

Controls VC dim
Controls error

with a control parameter C'. 19

Soft-Margin Classification

K
@Q
X 3
X
X -
x [ °
(
, ™ Inside margin,
\/ ) incorrectly classified
X’ Support Vectors
/?\‘/ ) °
v

Inside margin, correctly classified
e Some problems can violate the condition:
di(wai +b)>1
e We can introduce a new set of variables {&; f\le:
di(WTXi + b) >1-&;

where &; is called the slack variable.
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Soft-Margin Classification: Solution

e Following a similar route involving Lagrange multipliers, and a

more restrictive condition of 0 < «; < (', we get the solution:

N
Wo = E Qo,idiX;
i—1

bo = dz(l — fz) — WZXi
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Nonlinear SVM

Input space

Feature space

o Nonlinear mapping of an input vector to a high-dimensional

feature space (exploit Cover’s theorem)

Construction of an optimal hyperplane for separating the features
identified in the above step.
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Inner-Product Kernel (cont’d)

The inner product o7 (x) ¢ (x; ) is between two vectors in the
feature space.

The calculation of this inner product can be simpified by use of a
inner-product kernel K (x, x; ):

K(x,xi) =@ (x)p(xi) = > ©;(x);(xi)
=0

where M1 is the dimension of the feature space. (Note:
K(x,x;) = K(xi,%).)

® So, the optimal hyperplane becomes:

N
Z Ozz'diK(X, X@‘) =0
=1
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Inner-Product Kernel

Input x is mapped to ¢ (x).

With the weight w (including the bias b), the decision surface in
the feature space becomes (assume ¢ (x) = 1):

wlp(x) =0

Using the steps in linear SVM, we get
N
W = Zaidicp(xi)
i=1
Combining the above two, we get the decision surface
N
Z Oéidi(pT (Xi)go(x) =0.
i=1
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Inner-Product Kernel (cont’d)

Mercer’s theorem states that /' (x, x; ) that follow certain
conditions (continuous, symmetric, positive semi-definite) can be
expressed in terms of an inner-product in a nonlinearly mapped

feature space.

Kernel function /' (x, x; ) allows us to calculate the inner
product goT (x)cp(xi) in the mapped feature space without any
explicit calculation of the mapping function ¢ (-).
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Examples of Kernel Functions Kernel Example

Linear: K (x,x;) = x' x;. e Expanding

K(x,x;)=(1+ xTxi)2

Polynomial: i (x,x;) = (x”x; + 1)P.

with x = [$1,$2]T,Xi = [%h%Q]T,
e RBF: K(x,x;) = exp (—#HX—XHP). 5 5
K(X,Xi) = 1+ zixi, +2x122751 452
e Two-layer perceptron: K (x,x;) = tanh (Box’'x; + 1) tasal, + 2x1xi1 + 222240
(for some o and [31). = [1,23,V2z122, 23, V221, V212]
1, %21, V2xi1i0, fL’?g, V2zi1,V2xi2]T
= =) Te(xi),
where (po(x) = [1, 22, V2x 122, x5, V221, V2xo)7.
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Nonlinear SVM: Solution Nonlinear SVM Summary
® The solution is basically the same as the linear case, where Project input to high-dimensional space to turn the problem into a
xT'x; is replaced with K (x, x; ), and an additinoal constraint linearly separable problem.

that v < C'is added. Issues with a projection to higher dimensional feature space:

e Statistical problem: Danger of invoking curse of dimensionality
and higher chance of overfitting
— Use large margins to reduce VC dimension
e Computational problem: computational overhead for calculating
the mapping ¢ (+):

— Solve by using the kernel trick.
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