
Slide07

Haykin Chapter 9: Self-Organizing

Maps

CPSC 636-600

Instructor: Yoonsuck Choe

Spring 2012

1

Introduction

• Self-organizing maps (SOM) is based on competitive learning,

where output neurons compete with each other to be activated

(Kohonen, 1982).

• The output neuron that activates is called the winner-takes-all

neuron.

• Lateral inhibition is one way to implement competition for map

formation (von der Malsburg 1973).

• In SOM, neurons are placed on a lattice, on which a meaningful

coordinate system for different features is created (feature map).

• The lattice thus forms a topographic map where the spatial

location on the lattice is indicative of the input features.

2

SOM and the Cortical Maps

• The development of SOM as a neural model is motivated by the

topographical nature of cortical maps.

• Visual, tactile, and acoustic inputs are mapped in a topographical

manner.

– Visual: retinotopy (position in visual field), orientation, spatial

frequency, direction, ocular dominance, etc.

– Tactile: somatotopy (position on skin)

– Acoustic: tonotopy (frequency)

3

Two Models

KohonenWillshaw−von der Malsburg

Weight
vector

input vector

• Willshaw-von der Malsburg model: input neurons arranged in

2D lattice, output in 2D lattice. Lateral excitation/inhibition

(Mexican hat) gives rise to soft competition. Normalized Hebbian

learning. Biological motivation.

• Kohonen model: input of any dimension, output neurons in 1D,

2D, or 3D lattice. Relaxed winner-takes-all (neighborhood).

Competetive learning rule. Computational motivation.
4

SOM Overview

SOM is based on three principles:

• Competition: each neuron calculates a discriminant function.

The neuron with the highest value is declared the winner.

• Cooperation: Neurons near-by the winner on the lattice get a

chance to adapt.

• Adaptation: The winner and its neighbors increase their

discriminant function value relative to the current input.

Subsequent presentation of the current input should result in

enhanced function value.

Redundancy in the input is needed!

5

Redundancy, etc.

• Unsupervised learning such as SOM require redundancy in the

data.

• The following are intimately related:

– Redundancy

– Structure (or organization)

– Information content relative to channel capacity

6

Redundancy, etc. (cont’d)

Left Right

Structure No Yes

Redundancy No Yes

Info<Capacity No Yes

Consider each pixel as one random variable.

7

Redundancy, etc. (cont’d)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

randdat.dat

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

randdat2.dat

Left Right

Structure No Yes

Redundancy No Yes

Info<Capacity No Yes

Consider each axis as one random variable.

8

Self-Organizing Map (SOM)

x x

w

1 2

2

x =

w1w =i i i

2D SOM Layer

Input

Kohonen (1982)

• 1-D, 2-D, or 3-D layout of units.

• One weight vector for each unit.

• Unsupervised learning (no target output).

9

SOM Algorithm

x x

w

1 2

2

x =

w1w =i i i

2D SOM Layer

Input

Neighbor

1. Randomly initialize weight vectors wi

2. Randomly sample input vector x

3. Find Best Matching Unit (BMU):

i(x) = argminj‖x−wj‖

4. Update weight vectors:

wj ← wj + ηh(j, i(x))(x−wj)

η : learning rate

h(j, i(x)) : neighborhood function of BMU.

5. Repeat steps 2 – 4.

10

SOM Learning

Input Space

input

w
c(x−w)

SOM lattice

weight
vector

• Weight vectors can be plotted in the input space.

• Weight vectors move, not according to their proximity to the input

in the input space, but according to their proximity in the lattice.

11

Is This Hebbian Learning?: Sort of

• SOM learning can be viewed as Hebbian learning with a forgetting term to

check unbounded growth.

• Original Hebb’s rule:

∆wj = ηyjx,

where wj is the weight vector, η the learning rate, yj the output

response, and x the input vector.

• Hebb’s rule plus a forgetting term:

∆wj = ηyjx− g(yj)wj

= ηyjx− ηyjwj

= ηhj,i(x)(x−wj),

assuming g(y) = ηy and yj = hj,i(x) .

12

Typical Neighborhood Functions
Gaussian Neighborhood

exp(-(x*x+y*y)/2)

-4 -2 0 2 4 -4
-2

0
2

4

00.10.20.30.40.50.60.70.80.91

• Gaussian: h(j, i(x)) = exp(−‖rj − ri(x)‖2/2σ2)

• Flat: h(j, i(x)) = 1 if ‖rj − ri(x)‖ ≤ σ, and 0 otherwise.

• σ is called the neighborhood radius.

• rj is the location of unit j on the lattice.

13

Training Tips

• Start with large neighborhood radius.

Gradually decrease radius to a small value.

σ(n) = σ0 exp

(
n

τ1

)

• Start with high learning rate η.

Gradually decrease η to a small value.

η(n) = η0 exp

(
n

τ2

)

14

Two Phases of Adaptation

• Self-organization or ordering phase: High learning rate, large

neighborhood radius (entire map).

• Convergence phase: Low learning rate, small neighborhood

radius (one or zero).

15

Performance Measures

• Quantization Error

Average distance between each data vector and its BMU.

εQ =
1

N

N∑

j=1

‖ xj −wi(xj)
‖

• Topographic Error

The proportion of all data vectors for which first and second BMUs

are not adjacent units.

εT =
1

N

N∑

j=1

u(xj),

u(x) = 1 if the 1st and 2nd BMUs are not adjacent

u(x) = 0 otherwise.

16

SOM Summary

Essential ingredients of SOM: Hebbian learning rule (with forgetting

term)

• Input generated according to a certain probability distribution on a

continuous input space.

• Topology of network form on the discrete lattice.

• Time-varying neighborhood function around the winner.

• Time-varying leanring rate.

17

SOM Summary (cont’d)

Properties of SOM

• Approximation of the input space: The collection of weight

vectors provides a good approximation of the input space.

• Topological ordering: Spatial location on the lattice correspond

to a certain feature of input patterns. Near-by neurons on the

lattice represent similar input features.

• Density matching: More neurons are recruited to represent

dense area in the input space.

• Feature selection: Select best features to approximate the

underlying distribution.

18

Example: 2D Input / 2D Output

• Train with uniformly random 2D inputs.

Each input is a point in Cartesian plane.

• Nodes: weight vectors (x and y coordinate).

• Edges: connect immediate neighbors on the map.

19

Different 2D Input Distributions

• What would the resulting SOM map look like?

• Why would it look like that?

20

High-Dimensional Inputs

SOM Output Space

Input space

SOM can be trained with inputs

of arbitrary dimension.

• Dimensionality reduction:

N-D to 2-D.

• Extracts topological features.

• Used for visualization of data.

21

Applications

• Data clustering and visualization.

• Optimization problems:

Traveling salesman problem.

• Semantic maps:

Natural language processing.

• Preprocessing for signal and image-processing.

1. Hand-written character recognition.

2. Phonetic map for speech recognition.

22

Exercise

1. What happens when hj,i(x) and η was reduced quickly

vs. slowly?

2. How would the map organize if different input distributions are

given?

3. For a fixed number of input vectors from real-world data, a

different visualization scheme is required. How would you use the

number of input vectors that best match each unit to visualize the

property of the map?

23

SOM Example: Handwritten Digit Recognition

• Preprocessing for feedforward networks (supervised learning).

• Better representation for training.

• Better generalization.

24

SOM Demo

Jochen Fröhlich’s Neural Networks with JAVA page:
http://fbim.fh-regensburg.de/˜saj39122/jfroehl/diplom/e-index.html

Check out the Sample Applet link.

25

SOM Demo: Traveling Salesman Problem

Using Fröhlich’s SOM applet:

• 1D SOM map (1× n, where n is the number of nodes).

• 2D input space.

• Initial neighborhood radius of 8.

• Stop when radius< 0.001.

• Try 50 nodes, 20 input points.

Click on [Parameters] to bring up the config panel. After the

parameters are set, click on [Reset] in the main applet, and then

[Start learning].

26

SOM Demo: Space Filling in 2D

Using Fröhlich’s SOM applet:

• 1D SOM map (1× n, where n is the number of nodes).

• 2D input space.

• Initial neighborhood radius of 100.

• Stop when radius< 0.001.

• Try 1000 nodes, and 1000 input points.

27

SOM Demo: Space Filling in 3D

Using Fröhlich’s SOM applet:

• 2D SOM map (n× n, where n is the number of nodes).

• 2D input space.

• Initial neighborhood radius of 10.

• Stop when radius< 0.001.

• Try 30× 30 nodes, and 500 input points. Limit the y range to 15.

Also try 50× 50, 1000 input points, and 16 initial radius.

28

Vector Quantization

• Vector quantization exploits the structure in the input distribution

for the purpose of data compression.

• In vector quantization, the input space is partitioned into a number

of distinct regions and for each region a reconstruction vector is

defined.

• A new input is then represented by the reconstruction vector

representing the region it falls into.

• Since only the index of the reconstruction vector need to be

stored or transmitted, significant saving is possible in terms of

storage space and bandwidth.

• The collection of reconstruction vectors is called the code book.

29

Vector Quantization (cont’d)

• A vector quantizer that minimizes encoding distortion is called a

Voronoi or nearest-neighbor quantizer.

• SOM provides an approximate method for calculating the Voronoi

tessellation.

30

Learning Vector Quantization

• Train with SOM in unsupervised mode.

• Then, tune the weight vectors in a supervised mode:

– If class of the input vector and the class of the best matching

weight vector match,

wc(n+ 1) = wc(n) + αn[xi −wc(n)]

– If class of the input vector and the class of the best matching

weight vector do not match,

wc(n+ 1) = wc(n)− αn[xi −wc(n)]

31

Other Topics

• Different ways of visualization using SOM.

• Contextual map (or semanics map).

• SOM viewed as

– Abstract neuroscientific model of the cortex

– Vector quantizer

• Difficulty of analysis (convergence, etc.)

• Use in modeling cortical map formation.

32

