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What Does This Mean?
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We are Clueless!
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What If They Are Cortical

Responses to Something
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We are Still clueless!
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They Are Visual Cortical Responses

to Oriented Lines

This is a problem of grounding (Harnad 1990).
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Overview

• Grounding internal representations

• Learning internal representations

• Perceptual vs. motor representations
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Part I: Grounding

Choe et al. (2007); Choe and Smith (2006); Choe and Bhamidipati (2004)
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What Is Grounding?
... How can the meanings of the meaningless symbol tokens,

manipulated solely on the basis of their (arbitrary) shapes, be

grounded in anything but other meaningless symbols? ...

– Harnad (1990)

• Given a representation, figure out what it represents/means.

• Given an activity pattern in the brain, figure out what information it

carries (decoding, decompression, etc.).

Miikkulainen et al. (2005); Weliky et al. (1995)
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Grounding in the Brain
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(a) External observer (b) Internal observer

The problem of grounding, within the brain:

• External observer (e.g., a neuroscientist) can

figure out how spike S relates to input I .

• Internal observer cannot seem to, which does not

make sense at all.
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Example: The Visual Cortex
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V1 Response to Input Gabor-like RFs

• With access to both I and S, Hubel and Wiesel

(1959) figured out f : I → S in V1 (oriented

Gabor-like receptive fields Jones and Palmer 1987).

• But even before that, and with access to only S,

humans had no problem perceiving orientation.
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Possible Solution: Allow Action

fI
S

• A major problem in the picture is the passiveness of

the whole situation.

• Adding action can help solve the problem.

• But why and how?
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Experimental Evidence

Bach y Rita (1972; 1983)

• Vibrotactile array linked to a

video camera.

• Passive viewing results in

tactile sensation.

• Moving the camera results

in a vision-like sensation.

• Sensation as related to

voluntary/intentional

action may be the key!
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Approach: Grounding Through

Action

π

Filter
Bank

Sensor
Array

sfI a

Action
Vector

Visual FieldVisual Environment

Action

Perception

• Direct access to encoded internal state (sensory

array) only.

• Action is enabled, which can move the gaze.

• How does this solve the grounding problem? 14



Action for Unchanging Internal State

• Diagonal motion causes the internal state to remain

unchanging over time.

• Property of such a movement exactly reflects the

property of the input I : Semantics figured out

through action.
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Task

• Given an encoded sensory signal s, we want to

learn action a that maximizes the invariance in the

internal state over time.

• The learned action a will give meaning to s.

• This is basically a reinforcement learning task.
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Methods: Orientation Response
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Sensory state:

s = arg max
1≤θ≤n

rθ.
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Methods: Reinforcement Learning

Learn policy π : S → A.

• Reward ρ: Similarity between previous and current

internal state.

• Learning reward function R(s, a):

Rt+1(st, at) = Rt(st, at) + α ρt+1,

followed by normalization.

• Policy π derived from learned R(s, a).
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RL: Reward and Penalty ρ
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No reward Reward!

Reward actions a that maintain invariance in s.

• If s1 = s2, Reward.

• If s1 6= s2, Penalty.
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RL: Reward and Penalty ρ

Reward actions a that maintain invariance in s.

• If s1 = s2, Reward.

• If s1 6= s2, Penalty. 20



Reward Probability Table R(s, a)
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• Reward probability R(s, a) can be tabulated.

• In an ideal case (world consists of straight lines only), we expect

to see two diagonal matrices (shaded gray, above).
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Results: Learned R(s, a)

(a) Initial (b) Ideal (c) Final

Synthetic image

(a) Initial (b) Ideal (c) Plant (d) Oleander

Natural images

• Learned R(s, a) close to ideal.
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Results: Gaze Trajectory

(a) Input (b) Initial (c) Final
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Results: Demo
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Part I: Summary
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• (1) Using invariance as the only criterion, (2)

particular action pattern was learned, (3) that has

the same property as the input that triggered the

sensors.
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Part II: Learning Internal

Representations

Yang and Choe (2007)
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Theories of RF Formation

Hoyer and Hyvärinen (2000)

Well-developed understanding on how RFs form:

• Olshausen and Field (1997): Sparse coding; Barlow (1994):

Redundancy reduction; Bell and Sejnowski (1997): Information

maximization; Miikkulainen et al. (2005): Self-organization

through Hebbian learning.

However, how is the resulting code to be used remains a question.
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Questions

• The motor-based grounding experiment assumed

that receptive fields are given and fixed.

• Can these be learned (developed) along with the

grounding process?
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Learning RFs along with Their

Grounding (Decoding)

• Grounding (decoding): Same as Part I.

• RFs develop through local learning:

gij =
gij + α(Iij − gij)∑

mn gmn + α(Imn − gmn)
,

where gij is the afferent connection weight and Iij
the input pixel value.

29



Experiments

• Effects of different action policy on RF learning.

– Random R(s, a)

– Ideal R(s, a)

• Simultaneous learning of RF and action policy.

– RF learning through normalized Hebbian learning

– Reinforcement learning of R(s, a) based on

internal-state invariance
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Effects of R(s, a) on RF Learning

Fixed RandomR Fixed IdealR

RF w/ Random Policy RF w/ Ideal Policy

Reference RFs Reference RFs
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Simul. Learning of RFs & R(s, a)

Learned RFs

LearnedR(s, a)

• Seemingly unordered RFs and R(s, a) results.
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Reordering RFs
RFs

R(s,a)

RFs

R(s,a)Reorder

• The R(s, a) result looks bad because each row’s

corresponding RF orientation is not ordered.

• Reordering RF orientation reorders the rows in

R(s, a).

33



Reordered RFs and R(s, a)

Reference RFs

Reordered final RFs

Reordered finalR(s, a)

• However, reordering the RFs and their

corresponding R(s, a) rows shows the true

underlying structure! (Not perfect, but a good start!)
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Part II: Summary

• Action policy strongly influences RF properties, by

altering the input statistics.

• Certain action policies may give better RFs, faster.

• Receptive fields and action policy can learn

simultaneously, from scratch, thus allowing

encoding/decoding to evolve together.
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Part III: Perceptual vs. Motor

Representations

Misra and Choe (2007)
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Learning About Shapes
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• For complex objects, a history of sensory activity may be needed

(i.e., some form of memory).

• Invariance can be detected in the spatiotemporal pattern of

sensor activity.
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Motor System and Object

Recognition

Yarbus (1967)

• When we look at objects, our gaze wanders around.

• Could such an interaction be necessary for object

recognition?
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Advantage of Motor-Based Memory

(Habit, or Skill)
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• Sensor-based representations may be hard to learn

and inefficient.

• Motor-based approaches may generalize better.

• Comparison: Make both into a 900-D vector and

compare backpropagation learning performance.
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Class Separability

−20 −15 −10 −5 0 5 10
−15

−10

−5

0

5

10

15

20

Principal axis 1

P
rin

ci
pa

l a
xi

s 
2

Triangle
Circle
Square

−3 −2 −1 0 1 2 3 4
−8

−6

−4

−2

0

2

4

Principal axis 1

P
rin

ci
pa

l a
xi

s 
2

Triangle
Circle
Square

(a) Visual Memory (b) Motor Memory

• Comparison of PCA projection of 1,000 data points

in the visual and motor memory representations.

• Motor memory is clearly separable.
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Speed and Accuracy of Learning
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• Motor-based memory resulted in faster and more

accurate learning (10 trials).
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Part III: Summary

Motor-based representations of shape are

• More separable in the representational space,

• Faster to learn,

• Better at novel tasks (generalization), compared to

sensory representations.
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Wrap Up
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Related Works (Selected)

• Pierce and Kuipers (1997): Learning from raw sensor/actuators

(See related work on bootstrap learning).

• Miikkulainen et al. (2005): Visual cortical development and

function

• Ballard (1991): Animate vision

• Rizzolatti et al. (2001): Mirror neurons

• Salinas (2006): Sensory RF coding dictated by downstream

requirements.

• Sejnowski (2006): Importance of “projective fields”.
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Discussion

• Main contribution: Discovery of the invariance

criterion for sensorimotor grounding, development,

and recognition.

• Importance of self-generated action in autonomous

understanding.

• Richer motor primitive repertoire can lead to richer

understanding.

• Tool use can dramatically augment motor primitive

repertoire.
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Conclusions

We must ask how the brain understands itself.

• Action is important for understanding/grounding.

• Simple criterion (state invariance) can help link

sensory coding with meaningful action.

• RFs can be developed along with grounding.

• Motor-based representations are more effective for

shape recognition.
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Credits

• Contributors: Kuncara A. Suksadadi, S. Kumar

Bhamidipati, Noah Smith, Stu Heinrich, Navendu

Misra, Huei-Fang Yang, Daniel C.-Y. Eng

• Choe et al. (2008, 2007); Choe and Smith (2006);

Choe and Bhamidipati (2004)
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Why Do We Have the Brain?

• Survival and reproduction? Think again!

Tree

(no Brain)

Tunicate

Free-floating

(w/ Brain)

Tunicate

Settled

(w/o Brain)
Llinás (2001)

Sources: http://homepages.inf.ed.ac.uk/jbednar/ and http://bill.srnr.arizona.edu/classes/182/Lecture-9.htm
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