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Heuristic for Making Backprop Perform Better

1. Sequential vs. batch update: for large and highly redundant

data sets, sequential update works well.

2. Maximization of information content: Every training sample

should be chosen to maximize information content (we want to

search more of the weight space).

• Use examples that result in the largest error.

• Use examples that are radically different from those

previously used.

• Randomize (shuffle) input presentation order.

• Use an emphasizing scheme: present more difficult inputs.

Issues: input distribution is distorted, and outlier or mislabeled

input can cause serious problems.
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Heuristic for Backprop (cont’d)
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Covariance EqualizationDecorrelationMean removal

3. Activation function: Usually learning is faster with antisymmetric

activation functions. φ(−v) = −φ(v). A popular example is

φ(v) = a tanh(bv). Note: φ′(v) = ab(1− tanh2(bv)).

4. Target values: target values should be within the range of the

sigmoid activation function.

5. Normalizing the inputs: preprocessing to make certain

statistical properties hold over the entire training set is important.
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Heuristic for Backprop (cont’d)

6. Initialization: Small initial weight values are usually good, since

they prevent saturation of activity, but it is not good either to have

too small weights. One suggestion is to initialize the weights to

random values from a uniformly random distribution with zero

mean and standard deviation of σw = m−1/2, wherem is the

number of connections for that neuron.

7. Learning from hints: Include prior information about the function

to be learned f(·), e.g., invariance properties, symmetries, etc.

8. Learning rates: hidden layer should have higher learning rate

that output layer (output layer tends to have larger local gradients).

Neurons with many inputs should have smaller learning rates.
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Weight Initialization

• Given an input distribution (zero mean, unit variance), what is the

distribution of the induced local field (the weighted sum) that gets

plugged into the sigmoid φ(·)?

• We want this value v to be within the ramp region of the sigmoid.

• For this, what should the weight distribution look like?
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Weight Initialization (cont’d)

• Input: µy = E[yi] = 0, σ2
y = E[(yi − µy)2] = E[y2] = 1.

Also assumeE[yiyk] = 1 if k = i and 0 if k 6= i (inputs are

uncorrelated).

• Weights: µw = E[wji] = 0, and

σw = E[(wji − µw)2] = E[w2
ji].

• Induced local field:

µv = E[vj ] = E

[
m∑

i=1

wjiyi

]
=

m∑

i=1

E[wji]E[yi] = 0.

σ
2
v = E

[
(vj − µv)

2
]

= E[v
2
j ] = E

[
m∑

i=1

m∑

k=1

wjiwjkyiyk

]

=
m∑

i=1

m∑

k=1

E[wjiwjk]E[yiyk] =
m∑

i=1

E[w
2
ji] = mσ

2
w.

We want to adjust σv = m1/2σw to fit within the the ramp of φ(·).
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Supervised Learning as an Optimization Problem

• Supervised training of MLP as a problem of numerical optimization of

Eav(w) averaged over all input samples.

• Taking the Taylor series expansion:

Eav(w(n) + ∆w(n)) = Eav(w(n)) + gT (n)∆w(n)

+ 1
2 ∆wT (n)H(n)∆w(n) +HOT,

where

g(n) =
∂Eav(w)

∂w

∣∣∣∣
w=w(n)

and H(n) =
∂2Eav(w)

∂w2

∣∣∣∣∣
w=w(n)

• First-order method: gradient descent (linear approx)

∆w(n) = −ηg(n)

• Second-order method: Newton’s method (quadratic approx)a

∆w∗(n) = −H−1(n)g(n)

aNote: typo in this eq in the book (need to add ”-”)
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Newton’s Methods vs. Grad. Descent

source: wikipedia

• Gradient descent (green): linear search

• Newton’s method (red): quadratic search.
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Conjugate Gradient Method: Introduction

• Newton’s method, using the inverse of the Hessian H−1(n),

has limitations:

– Computation of the Hessian can be expensive,

– The Hessian needs to be nonsingular (for the inverse), which

is rarely the case.

– When the cost function is non-quadratic, convergence is not

guaranteed.

• Conjugate gradient method overcomes the above problems

while accelerating convergence (it’s a second-order method).
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Quadratic Function Minimization

• Consider minimizing the quadratic function (A is sym. pos. def.):

f(x) =
1

2
xTAx− bTx+ c

which is minimized for

x∗ = A−1b.

So, the minimization problem turns into solving a system of linear

equations: Ax∗ = b.

• Conjugate vectors: Given an matrix A, nonzero vectors

s(0), s(1), ...s(W − 1) is A-conjugate if

sT (n)As(j) = 0 for all n 6= j.

When A = I, the meaning is clear: The vectors are orthogonal.
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Conjugate Vectors: Properties

• The square root of the matrix A is defined as: A = A1/2A1/2

(existence and uniqueness is guaranteed for pos. semidefinite matrices).

• Since A is symmetric positive definite,

A
T

=
(
A

1/2
A

1/2
)T

= (A
1/2

)
T

(A
1/2

)
T

Thus, we get A1/2 = (A1/2)T .

• Given any conjugate vectors xi and xj ,

xiAxj = xT
i

(
A1/2A1/2

)
xj = xT

i

(
(A1/2)TA1/2

)
xj

= xT
i (A1/2)TA1/2xj =

(
A1/2xi

)T
A1/2xj = 0.

• So, transforming any (nonzero) vector xi into:

vi = A
1/2

xi

results in vectors vi that are mutually orthogonal.
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Conjugate Vectors: Properties (Lin. Indep.)

The conjugate vectors are linearly independent, so they can form a basis to span

the vector space.

• Proof: Assume they are not linearly independent:

s(0) =

W−1∑

j=1

αjs(j).

Multiplying both sides by As(0), we get:

s
T

(0)As(0) =

W−1∑

j=1

αjs
T

(j)As(0).

But, this is 0, since sT (0)As(0) = 0 since these are conjugate

vectors. However, A is positive definite and the vectors are nonzero, the

sum cannot be 0, a contradiction. Thus, the conj. vectors are not linearly

dependent.
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Conjugate Direction Method

• For a quadratic error function f(x)

x(n+ 1) = x(n) + η(n)s(n), n = 0, 1, ...,W − 1,

where x(0) is an arbitrary initial vector and η(n) is defined by

f(x(n) + η(n)s(n)) = min
η
f(x(n) + ηs(n)).

The part where η(n) is picked is called a line search.

• So, in sum, both the direction and the distance are determined.
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Conjugate Direction Method (cont’d)

Observations

• Since the conjugate vectors are linearly independent, they form a

basis that spans the vector space of x.

• The line search results in the following formula for η:

η(n) = − sT (n)Aε(n)

sT (n)As(n)
,

where ε(n) = x(n)− x∗ is the error vector.

– But x∗ is unknown!

– A(x−x∗) = (Ax−b)− (Ax∗ − b)︸ ︷︷ ︸
This is 0.

= (Ax−b).

• Starting from an arbitrary x(0), the method reaches the

minimum in at mostW iterations.
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Conjugate Direction Method (cont’d)

• For each iteration n, x(n+ 1) minimizes f(x) over a linear

vector spaceDn that passes through an arbitrary point x(0),

and is spanned by the A-conjugate vectors:

x(n+ 1) = argmin
x∈Dn

f(x),

where

Dn =



x(n)

∣∣∣∣∣∣
x(n) = x(0) +

n∑

j=0

η(j)s(j)



 .

• The whole scheme depends on the existence of the conjugate

vectors s(n): Solution—conjugate gradient method.
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Conjugate Gradient Method

Determine successive conjugate vectors {s(n)} in a sequential

manner at successive steps.

• Residual: r(n) = b−Ax(n) (note: this is−∂f/∂x).

• Recursive step: Find the next step s(n) as

s(n) = r(n) + β(n)s(n− 1), n = 1, 2, ...,W − 1,

where the scaling factor β(n) is determined as

β(n) = − sT (n− 1)Ar(n)

sT (n− 1)As(n)
.

This results in conjugate vectors s(n)!

• Problem: we need to know A, with respect to which the vectors

are conjugate.
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Conjugate Gradient Methods: Alternative β(n)s

We can evaluate the scaling factor β(n) without an explicit knowledge

of the matrix A, based only on the residuals:

• Polak-Ribiére formula

β(n) = −rT (n)(r(n)− r(n− 1))

rT (n− 1)r(n− 1)
.

• Fletcher-Reeves formula

β(n) = − rT (n)r(n)

rT (n− 1)r(n− 1)
.

Polak-Ribiére form is superior for nonquadratic cost functions, and is

guaranteed to converge if β = max(βPR, 0).
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Conjugate Gradient Method: Estimating η(n)

Line search procedure estimates the proper η(n):

• Bracketing phase: find a nontrivial interval that is known to

contain the minimum.

• Sectioning phase: divide the bracket into sections, leading to

successively narrower brackets.

• These two steps above can be achieve by inverse parabolic

approximation.

• Repeated application of the two phases results in good estimation

of the point of minimum.
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Conjugate Gradient Method vs. Gradient Descent

• Gradient descent can oscillate badly.

• Conjugate gradient method can directly bring you to the minimum

in one step (plus the initial step) if the cost function is quadratic

(for a 2D case).

Figure from Gutierrez-Osuna’s 636 notes.
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Application of CGM to NN Learning

• Approximate the cost function Eav(w) by a quadratic function

(ignore HOT).

• Formulate the computation of coefficients β(n) and η(n) so as

to only require gradient information: avoid calculating the Hessian.

Quadratic function f(x) Cost function Eav(w)

Parameter vector x(n) Weight vector w(n)

Gradient vector ∂f(x)
∂x

Gradient vector g = ∂Eav
∂w

Matrix A Hessian matrix H
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