Slide03
Haykin Chapter 3 (Chap 1, 3, 3rd
Ed): Single-Layer Perceptrons

CPSC 636-600
Instructor: Yoonsuck Choe

Multiple Faces of a Single Neuron

What a single neuron does can be viewed from different perspectives:

e Adaptive filter: as in signal processing
o C(Classifier: as in perceptron

The two aspects will be reviewed, in the above order.

Historical Overview
McCulloch and Pitts (1943): neural networks as computing
machines.
Hebb (1949): postulated the first rule for self-organizing learning.

Rosenblatt (1958): perceptron as a first model of supervised

learning.

Widrow and Hoff (1960): adaptive filters using least-mean-square
(LMS) algorithm (delta rule).

Part I: Adaptive Filter



Adaptive Filtering Problem

Consider an unknown dynamical system, that takes 1 inputs and
generates one output.

Behavior of the system described as its input/output pair:

T :{x(t),d(i);t =1,2,...,n,...} where
x(1) = [21(1), 22(3), ..., & (1)]7 is the input and d (i) the
desired response (or target signal).

Input vector can be either a spatial snapshot or a temporal sequence
uniformly spaced in time.
There are two important processes in adaptive filtering:

— Filtering process: generation of output based on the input:
. T/,. .
y(i) = x" (i)w(i).

— Adapative process: automatic adjustment of weights to reduce error:

e(i) = d(i) —y(7).

Steepest Descent

We want the iterative update algorithm to have the following
property:
E(w(n+1)) <E&(w(n)).

Define the gradient vector VE(w) as g.
The iterative weight update rule then becomes:
w(n + 1) = w(n) — ng(n)
where 77 is a small learning-rate parameter. So we can say,

Aw(n) = w(n + 1) — w(n) = —ng(n)

Unconstrained Optimization Techniques

e How can we adjust w (%) to gradually minimize e(7)? Note that

e(i) = d(i) — y(i) = d(i) — x* (i)w(i). Since d() and x (1)
are fixed, only the change in w (%) can change e(7).

In other words, we want to minimize the cost function £ (W) with respect
to the weight vector w: Find the optimal solution w ™.

The necessary condition for optimality is
VE(wW™) =0,

where the gradient operator is defined as

B I |

Owy Owa ~ Owm
With this, we get
_[og og o€

T
)= [awl ’ 8w2’m8wm} .
6

VE(w

Steepest Descent (cont’d)

We now check if £(w(n + 1)) < E(w(n)).

Using first-order Taylor expansion of £(-) near w(n),

E(w(n +1)) = E(w(n)) + g’ (n)Aw(n)

and Aw(n) = —ng(n), we get

Ew(n+1)) =~ &w(n)) —ng'(n)g(n)

= E(w(n)) —nlgn)|?.

Positive!

So, it is indeed (for small 77):

E(w(n + 1)) <E(w(n)).

T Taylor series: f(z) = f(a) + f'(a)(x — a) + W + ...

8



wy(n)

Steepest Descent: Example Steepest Descent: Another Example

4.0

Gradient of x*x+y*y

wy(n)

0.0

PR
W
N=o

-4.0 > 0
4.0 ug.&) 40 40 wo]((:') 40
(@) (b)
-7
e Convergence to optimal w is very slow. 7 2
e Small 7): overdamped, smooth trajectory For f(x) = f(z,y) = z° + y°,
T
. . Vf(x = [g ﬂ} = [2z, 2y]T". Note that (1) the gradient
e Large 7): underdamped, jagged trajectory (@) 9=’ 9y 22, y]. . (1)the g
vectors are pointing upward, away from the origin, (2) length of the vectors are

® 1) too large: algorithm becomes unstable shorter near the origin. If you follow —V f (x, y) you will end up at the origin.

We can see that the gradient vectors are perpendicular to the level curves.

* The vector lengths were scaled down by a factor of 101tc6avoid clutter.

Newton’s Method Gauss-Newton Method

® Applicable for cost-functions expressed as sum of error squares:
o Newton’s method is an extension of steepest descent, where the

n
second-order term in the Taylor series expansion is used. E(w) = 5 Z ei(w)2’
1=1
e |tis generally faster and shows a less erratic meandering

where e; (W) is the error in the 7-th trial, with the weight w.
compared to the steepest descent method.

e Recalling the Taylor series f () = f(a) + f'(a)(x — a)..., we can

e There are certain conditions to be met though, such as the express ¢; (W) evaluated near e; (W) as
Hessian matrix V2 & (w) being positive definite (for an arbitarry 9e. 1T
%, xTHx > 0). ei(w) =es(wa) + [ 9] (w—wa).
W:Wk

e In matrix notation, we get:
e(w) =e(wg) + Je(wg)(Ww — wg).

* We will use a slightly different notation than the textbook, for clarity.

11 12



Gauss-Newton Method (cont’d) Quick Example: Jacobian Matrix

Je(w) is the Jacobian matrix, where each row is the gradient e Given
of e;(W):
e(z.y) = er(z,y) | z? +y°
Oe Oe Oe ) - - . )
bus  Dug v Duy (Ver(w)” ea(x,y) cos(z) + sin(y)
Jeg Oeg Oeg (Ve ( T
L e Own e The Jacobian of e(z, ) becomes
Je(w) = : : : =
deq (x,1 deq (x,
Su(zy) = 18(1: ) 18(y D) B 2 2y
B E] E] T Sl = Oez(z,y) Oez(@.y) B —sin(z) cos(y) .
afli aff; c D (Ven(w)) Oz 9y

e For (x,y) = (0.57, 7), we get
We can then evaluate Je (W, ) by plugging in actual values of

W[ into the Jabobian matrix above. Jo(0.57, 1) = T 2 = T m .
—sin(0.57)  cos(m) -1 -1

13 14
Gauss-Newton Method (cont’d) Linear Least-Square Filter
Again, starting with e Given m input and 1 output function y(7) = qﬁ(x;rwi) where
¢(x) = x,ie, itis linear, and a set of training samples {x;, d; };"_ 1,
e(w) = e(wr) + Je(wi)(w — wy), we can define the error vector for an arbitrary weight w as
what we want is to set w so that the error approaches 0. e(w) —d— [Xl X, .., Xn]TW.
That is, we want to minimize the norm of e(w): . .
whered = [d1,da, ..., d,]" . Setting X = [x1, X2, ..., Xn]",
lew)lI> = lle(wi)ll* + 2e(wi) " Jo(wi) (W — wi) we get: e(w) = d — Xw.
+ (w — wi) T I (wi)Je(wi) (W — wi). e Differentiating the above wrt w, we get Ve(w) = —X T . So, the
Jacobian becomes Jo (w) = (Ve(w))? = —X.
Differentiating the above wrt w and setting the result to 0, we get
® Plugging this in to the Gauss-Newton equation, we finally get:
Jr (wk)e(wk)—i—JT (Wi )Je (W) (Ww—wy) = 0, from which we get
© © © w = wp+ (XTX)"'XT(d - Xwy,)
T —1,T _
w=wp — (Jg (Wi)Je(Wk)) "Jg (Wi)e(wy). = wi+ XTX)"'xTd - (XTX)" ' X" Xwy

\~

« 7T ) . .
J_ (W )Je (W) needs to be nonsingular (inverse is needed). This is Tws, = W
= XTx)"'x7Td.

15 16



Linear Least-Square Filter (cont’d) Linear Least-Square Filter: Example

Points worth noting: See src/pseudoinv.m.

X = ceil(rand(4,2)*10), wtrue = rand(2,1)*10 , d=Xxwtrue, w = inv (X’ *X)*X’ xd

e X does not need to be a square matrix! X =
10 7
e Wegetw = (XTX)~1X7d off the bat partly because the 307
3 6
output is linear (otherwise, the formula would be more complex). 5 4
e The Jacobian of the error function only depends on the input, and wtrue =
. . . 0.56644
is invariant wrt the weight w. 4 99120
e The factor (X7 X) !XT (letss call it X T is like an inverse. q -
Multiply Xt to both sides of 40.603
36.638
31.647
d - XW 22.797
then we get: w =
w=X"d=X"Xw. 0. 56048
—— 4.99120
=I
17 18
Least-Mean-Square Algorithm Least-Mean-Square Algorithm: Evaluation
e Cost function is based on instantaneous values. ® LMS algorithm behaves like a low-pass filter.
1
E(w) = 5e2(w) e LMS algorithm is simple, model-independent, and thus robust.

e Differentiating the above wrt w, we get o LMS does not follow the direction of steepest descent: Instead, it

follows it stochastically (stochastic gradient descent).

0E(w) de(w)
ow e(w) ow e Slow convergence is an issue.
e Plugginine(w) = d — x T, e LMS is sensitive to the input correlation matrix’s condition number
ratio between largest vs. smallest eigenvalue of the correl.
de(w) OE (w) ( 9 9
= —x, and hence = —xe(w). matrix).
ow ow

e Using this in the steepest descent rule, we get the LMS algorithm: ® LMS can be shown to converge if the learning rate has the

. . following property:
Wnit1 = Wy + NXpep.

0<n<

>\max

e Note that this weight update is done with only one (x;, d; ) pair! . _ '
where Amax is the largest elggnvalue of the correl. matrix.

19



Improving Convergence in LMS

® The main problem arises because of the fixed 7).

e One solution: Use a time-varying learning rate: 77(n) = ¢/n, as

in stochastic optimization theory.

o A better alternative: use a hybrid method called

search-then-converge.

n(n)

n > T, it behaves like stochastic optimization.

21

Part ll: Perceptron

23

10

"1+ (n/7)

When n < 7, performance is similar to standard LMS. When

Search-Then-Converge in LMS

7(n)

0.1my -

0.017

Inputs j

Standard LMS algorithm

n
(log scale)

Search-then-converge
schedule

Stochastic
approximation
schedule

FIGURE 3.5 Learning-rate annealing schedules.

_ 7o (n) 10

nn) = — vs. 7

n - 1+ (n/7)

22

The Perceptron Model
( X

X2

Output
y

Hard
limiter

e Perceptron uses a non-linear neuron model (McCulloch-Pitts

model).

v=>Y wizi+b,  y=¢() =
i=1

1
0

e Goal: classify input vectors into two classes.

24

ifv>0
ifv<0



Boolean Logic Gates with Perceptron Units

Wi1=1 Wi1=1 W1=-1
— — —
W2=1

Wy
Russel & Norvig
® Perceptrons can represent basic boolean functions.

o Thus, a network of perceptron units can compute any Boolean

function.

What about XOR or EQUIV?

25

Geometric Interpretation

11
-1 t
Slope = -W0

w0 t W1
10 O/—" Wi

W
11 |

Output=0fs

e Rearranging
Wo X Ig+ W71 X I1 —t > 0, thenoutputis 1,

we get (if W1 > 0)

—Wy ¥ Io 4 t
0 pep—
1 Wi

I >

where points above the line, the output is 1, and 0 for those below the line.

Compare with

—Wo t
X+ —

YT er Wy

What Perceptrons Can Represent

I1

Slope = -WO0

W
’ |

\1, 10
Output=0fs

Perceptrons can only represent linearly separable functions.

e Output of the perceptron:
Wo X Iop + W1 X I1 — t > 0, then output is 1

Wo X Ig + W71 x I; — t < 0, then outputis O

26

The Role of the Bias

Slope = -W0
w1
11

" Q/WL
l_ol 10

e Without the bias ({ = 0), learning is limited to adjustment of the

slope of the separating line passing through the origin.

o Three example lines with different weights are shown.

28



Limitation of Perceptrons Generalizing to n2-Dimensions

11

1 t
Slope = -W0

t W1

10 O,LO—V — W1 n=/[abc]" o
d
W | a
11 ‘ | el ®b\
\ y ® D

\l/ 0 @/
Output=0fs X

http://mathworld.wolfram.com/Plane.html

e Only functions where the 0 points and 1 points are clearly linearly

i = (a,b,c), T = (x,y,2),20 = (0, Yo, 20)-
separable can be represented by perceptrons.

Equation of a plane: 7 - (¥ — 2() = 0
® The geometric interpretation is generalizable to functions of 1

_ _ . e Inshort, ax + by + cz + d = 0, where a, b, c can serve as
arguments, i.e. perceptron with n inputs plus one threshold (or the weight, and d = —7i - 2 as the bias.
bias) unit.
e For n-D input space, the decision boundary becomes a

(n — 1)-D hyperplane (1-D Igoss than the input space).

29
Linear Separability Linear Separability (cont’d)
[ ]
11 11
O O O O 10 ’?
o '
Linearly—separable Not Linearly-separable Not Linearly—separable 0 0 0 ﬂ
10 10
e For functions that take integer or real values as arguments and AND OR XOR

output either 0 or 1.
P e Perceptrons cannot represent XOR!

e Left: linearly separable (i.e., can draw a straight line between the

o Minsky and Papert (1969
classes). Y pert ( )

o Right: not linearly separable (i.e., perceptrons cannot represent
such a function)

31 32



XOR in Detail

# Iy I
1 0 0 0
2| 0 1 1
3| 1 0
4 | 1 1 0
Wo x Inp + W1
1 —t<0
2 Wi —t>0
3 Wo—1t>0
4 Wo+W1—-t<0

11 Output = 1
XOR t
Slope = -W0
w0 t Wi
10 O/” > wi ;
W
11
1 !

Output=0fs

X 11 —t > 0, then output is 1:

t>0
Wi >t
Wo >t
- Wo+Wip <t

VN

2t < Wo + W1 < t(from2,3,and 4), butt > O (from 1), a
contradiction.

33

Perceptron Learning Rule

e Given a linearly separable set of inputs that can belong to class C or Cs,

® The goal of perceptron learning is to have

wlx > 0 forall input in class C1

T

w x < 0 forallinput in class C2

e |[f all inputs are correctly classified with the current weights W(n)

e Otherwise, adjust the weights.

w(n)Tx > 0, for all input in class C1, and

w(n)Tx < 0, for all input in class Ca,

then w(n + 1) = w(n) (no change).

35

Perceptrons: A Different Perspective

wlix > b then, output is 1

wlx = ||w||[|x][cos® > b then,outputis 1
[[x||cosO > ﬁ then, output is 1
So, if d = ||x|| cos 0 in the figure above is greater than m , then output = 1.

Adjusting w changes the tilt of the decision boundary, and adjusting the bias b
(and ||w||) moves the decision boundary closer or away from the origin.
34

Perceptron Learning Rule (cont’d)

For misclassified inputs (n(n) is the learning rate):
e w(n+1)=w(n) —nn)x(n)itwlx > 0andx € Cs.
e win+1)=w(n)+nn)x(n)iwl x <0andx € C;.

Or, simply x(n + 1) = w(n) + n(n)e(n)x(n), where
e(n) = d(n) — y(n) (the error).

36



Learning in Perceptron: Another Look

X+wW
+ +
L) W
N _ -
+ w + 7 w
- T x4 4 - -

I + I _ + o+
_ + o+ _ +
_ _ . _ N+
_ ———

W—X

When a positive example (C1) is misclassified,

w(n+ 1) = w(n) +n(n)x(n).

When a negative example (C2) is misclassified,

w(n+ 1) =w(n) —n(n)x(n).

Note the tilt in the weight vector, and observe how it would change
the decision boundary.

37

Perceptron Convergence Theorem (cont’d)
Using Cauchy-Schwartz inequality

Iwoll?llw(n + D)J* > [wgw(n+1)]°

From the above and w w(n + 1) > na,
2 2 2 2
[woll"[lw(n +1D)[I” = n"a

So, finally, we get

2 2
n «
Iwin+ DII? > =

[woll2

First main result

39

Perceptron Convergence Theorem

Given a set of linearly separable inputs, Without loss of generality, assume
n=1w(0) =0.

Assume the first . examples € C1 are all misclassified.
Then,usingw(n + 1) = w(n) + x(n), we get
w(n+1) =x(1) +x(2) + ... + x(n). (1)

Since the input set is linearly separable, there is at least on solution wg
such that w( x(n) > O forall inputs in C; .

— Define v = miny (n)ec, ng(n) > 0.

— Multiply both sides in eq. 1 with w, we get:
T T T T
wyw(n+1) = wy x(1)+wy x(2)+...+wgy x(n). (2
— From the two steps above, we get:

wgw(n +1) > na ®)

38

Perceptron Convergence Theorem (cont’d)
Taking the Euclidean normof w(k + 1) = w(k) + x(k),
lw(k 4+ 1D)|1* = [[w(k)[|* +2w” (k)x(k) + [|Ix(k)|*

Since all 7 inputs in C are misclassified, w” (k)x (k) < 0 for

k=1,2,...,n,

lw(k+ D)II* = [w(k)[I* = [Ix(k)[|* = 2w" (k)x(k) <0,
lw(k 4+ 1D)[1* < [lw(®)]|* + [Ix(k)]*
lw(k + 1)[1* = [w(k)[I* < llx(k)|?

Summing up the inequalities forall k = 1,2, ..., n,and w(0) = 0O,
we get

lw(k + D> < > [Ix(k)[|* < nB, (5)
k=1
where 3 = maxy (k) € C1||x(k)|?.
40



Perceptron Convergence Theorem (cont’d) Fixed-Increment Convergence Theorem
From eq. 4 and eq. 5,

n?a?

O < wn+ DI < np
Twol

Let the subsets of training vectors C1 and C2 be linearly separable. Let
the inputs presented to perceptron originate from these two subsets.

Here, « is a constant, depending on the fixed input set and the fixed The perceptron converges after some 1 iterations, in the sense that

solution W (so, ||w || is also a constant), and 3 is also a constant since

w(no) =w(no+1) =w(no+2)=....

it depends only on the fixed input set.

In this case, if . grows to a large value, the above inequality will becomes is a solution vector for ng < Nmax.
invalid (1 is a positive integer).

Thus, " cannot grow beyond a certain 72, 4, Where

2 2
% = nrnax/B
0
_ Bllwol?
max — Ta

and when n. = N, ax, all inputs will be correctly classified
41 42

TABLE 3.2 éumm;a ryiof the Perceptron Convergence Algorithm S u m m a ry

Variables and Parameters:

x(n) = (m+1)-by-1 input vector

= [+ 10000, 50), s 2 ()] e Adaptive filter using the LMS algorithm and perceptrons are
w(n) = (m + 1)-by-1 weight vector i . i .
= [b(n), wy(), ), ... w0, ()] closely related (the learning rule is almost identical).
b(n) = bias
»(n) = actual response (quantized) e LMS and perceptrons are different, however, since one uses
d(n) = desired response
m = learning-rate parameter, a positive constant less than unity ||near aCt|Vat|0n and the Othel’ hal’d |ImlteI’S
1. Initialization. Set w(0) = 0.Then perform the following computations for
timestepn =1,2,....

e LMS is used in continuous learning, while perceptrons are trained

2. Activation. At time step n, activate the perceptron by applying continuous-
valued input vector x(n) and desired response d(n).

3. Computation of Actual Response. Compute the actual response of the per- for Only a flnlte number Of Steps
ceptron:
= T . . . . .

Y = seale (xe] e Single-neuron or single-layer has severe limits: How can multiple
where sgn(-) is the signum function.
4. Adaptation of Weight Vector. Update the weight vector of the perceptron: |ayers help?

win + 1) = w(n) + n[d(n) = y(n)Ix(n)

where

+1 if x(n) belongs to class €,

d(n) = {7

1 if x(n) belongs to class €,

5. Continuation. Increment time step n by one and go back to step 2.

43 44



XOR with Multilayer Perceptrons

T ° ° T o

Note: the bias units are not shown in the network on the right, but they are needed.
o Only three perceptron units are needed to implement XOR.

o However, you need two layers to achieve this.

45



