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Research Motivations

* Why are we conscious?
— What brain activities?

— What kind of evolutionary pressure?

 |tistoo intricate to answer

* An alternative way to investigate

— Necessary conditions for the emergence of self-
awareness, a primitive form of consciousness



Self-awareness

e Self-awareness

— has an important role in cognitive processes
Block 1995]

* Task performance

— An agent doe not necessarily have to be self-
aware

 Then, why have intelligent agents evolved to
have self-awareness?



Approach

e The attributes of self-awareness
— Still uncertain [Taylor 2007]

* So, the emergence of self-awareness

— It is difficult to track down

* One way to circumvent the problem
— Find necessary conditions for the emergence
— Assess their evolutionary value



Internal State and Sense of Self

* Modeling of sensory motor dynamics

— The central nervous system (CNS)
* models sensory motor dynamics

* The model seems to reside in the cerebellum
[Wolpert, Miall, & Kawato 1998]

* Exploring one’s internal state
— can lead to a sense of self

— The sense of self

* maybe a prerequisite to build a machine with
consciousness [Kawamura et al. 2005]



Internal State

Neuronal activation levels
— can be considered as the state of a neural system

The state of a neural network

— the current activation levels of the hidden units [Bakker & de
Jong 2000]

The system state
— could be viewed as consciousness in a way [Rolls 2007]

Physiological arguments
— The firing rate of each neuron

tells stimuli [Rolls 2007]
— Spiking activities can be
used to rebuild the spatial environment

[Itskov & Curto 2007]



Internal State Predictability (ISP)

* The predictability of one’s own internal state
trajectory.

* Our results show
— ISP has a strong impact on performance of the
agents

— ISP could have led intelligent agents to develop
self-awareness



In summary,

* Spiking patterns of neurons

— One’s internal state

 Knowing internal state of oneself

— The first step of being conscious
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Method

* Understanding one’s own internal state (self-
aware or consciousness)

— Knowing what is going to happen in one’s own
internal state

* Quantified such an understanding
— as the predictability of the internal state trajectory
e Evolutionary value of such an understanding?

— We evolved sensory motor agents
* with recurrent neural network controllers



Method

Task
— 2DOF pole balancing

Training the controllers

— Neuro-evolution

The neural activity in the hidden layer
— The internal state of an agent

The predictability of the neural activity
— Measured by a supervised learning predictor



2DOF Pole Balancing

* A cart with a pole moves in a plane

— Balance the pole as long as possible

 Why 2D pole balancing?
— Easy to understand and visualize

— Embody many essential aspects of a whole class of
learning task
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Recurrent Artificial Neural Network
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 The controller of a pole
balancing agent

* |nputs neurons (8)

— Pole velocity and acceleration
of x and y positions and angles

e OQOutputs neurons (2)
— Force toward x and y directions
* One hidden layer, three neurons
— Recurrent to the input nodes

A(t)
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Genetic Algorithm

Evolution

— The changes seen in the inherited traits of a population
from one generation to the next [Wikipedia]

Genes
— Pass to offspring during reproduction

Reproduction

— Recombination of genes
— Not perfect

Natural selection

— Inherited traits
become more common in a population



Genetic Algorithm

* A population of abstract representation of candidate
solutions

Parents

— The abstract representation: chromosomes (genomes)
— Evolve to have better solutions

— The evolution starts from a population of randomly
generated individuals

 Natural selection

— In each generation, every individual is evaluated based on
fitness

* Reproduction {

— Generate a second generation population
— Recombination: crossover
— Mutation

Children
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Neuro-Evolution

Nonlinear control system
The neural networks were trained by GA

Network connection weights were evolved to
balance the pole

Chromosome / genome

— A series of all the network weights

Fitness function
— The number of pole balancing steps
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Time Series Prediction

e Time series

— A sequence of data from a dynamic system

e The activation level of hidden neurons

— Can be considered as a time series
* Time series prediction
X(t)
x(t—1)
x(t—N+])/

x(t+1) = f (X(t), X(t =1), X(t—2),..., x(t— N +1))
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Neural Network Predictor

e Feed forward neural networks have been

widely used ©

x(t—1)
x(t—2)

x(1)
x(t—1)
xX(t—2)

x(t—N+1)
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Adaptive Error Rates

 Errorin forecast a future state

— Should be adapted to the envelope of activation
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Training the Controllers

Pole balancing agents with a recurrent neural
network

The networks were trained by genetic algorithms

Force to the pole between -10N and 10N was
applied at 10 millisecond intervals

The pole length : 0.5 meter

The initial condition: 0.01 radian tilted from x-z
and y-z plane respectively

The area where the cart moved was 3 x 3 m?



Neuro-Evolution

* Fitness

— The number of steps where a network was able to
keep the pole within £15 degree

* Parameters
— Population size: 50
— Mutation rate: 0.2
— Crossover rate: 0.7
— Desired steps of pole balancing: 5,000

e Get around 130 successful networks



Training the Neural Network Predictor

* |SP can be measured using a feed forward
neural network predictor

* The predictor quantifies the predictability of
three hidden neurons’ outputs

* The size of sliding window: 4

* Using 3,000 activation values
— Training / test : 2,000 / 1,000

* Back-propagation algorithm
— Learning rate : 0.2



Performance Measurement

* Choose top-10 ISP networks and bottom-10 ISP

* Most of top-10 ISP networks show 99% of prediction rate
* Most of bottom-10 ISP networks show 17.37% to 48.53%
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Performance Measurement

 Compare performance of two ISP groups
 Make the initial condition harsher

— 0.07

radian to x-z plane, 0.04 radian to y-z plan

Learning Time
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Behavioral Predictability

* Do simple internal state trajectories reflect
behavioral properties?

Behavioral Predictability
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Examples of Internal Dynamics
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Example of Behavioral Trajectories

Position trajectories in the high ISP group
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Conclusion and Discussion

Starting with individuals showing same
behavioral performance

More predictable internal dynamics

— achieved higher level of performance in harsher
environmental conditions

— may have a survival value in evolutionary context

Internal properties can affect external behavioral
performance in changing environments

The results show how an Initial stepping stone to
self-awareness has been formed in the
evolutionary pathway



