Elementary Differential Equations

- First-order linear differential equations and solutions.
- Numerical solutions.
- Reference: E. Kreyszig, Advanced Engineering Mathematics, 5th ed., Wiley, 1983.

First-order Linear Differential Equations

- General form takes:

$$
y^{\prime}+a(x) y=r(x)
$$

where $y^{\prime}=d y / d x$ and y is a function of x. It is first order since the highest derivative is first order $\left(y^{\prime}\right)$. It is linear, because it is a linear function of y^{\prime} and y (no terms like y^{2} or $y^{\prime} y$, etc.).

- Homogeneous, when $r(x)=0$. In this case, the solution can be found easily through separation of variables.
- Nonhomogeneous, when $r(x) \neq 0$. The solution in this case is a bit more involved, and several different approaches exist.

Homogeneous 1st-order Linear Diff. Eq.

5. Integrate:
6. Start with

$$
y^{\prime}+a(x) y=0
$$

2. Subtract $a(x) y$ from both sides:

$$
y^{\prime}=-a(x) y
$$

$$
\int \frac{1}{y} d y=\int-a(x) d x
$$

$$
\ln y=-\int a(x) d x+c
$$

6. Apply $\exp (\cdot)$:
7. Divide both sides by y :

$$
\frac{1}{y} \frac{d y}{d x}=-a(x)
$$

$$
\begin{gathered}
y=\exp \left(-\int a(x) d x+c\right) \\
y=\exp \left(-\int a(x) d x\right) \times \exp (c) \\
y=C \exp \left(-\int a(x) d x\right)
\end{gathered}
$$

This called separation of variables.

Nonhomogeneous 1st-order Diff. Eq.

1. Start with

$$
y^{\prime}+a(x) y=r(x)
$$

2. Let y_{h} be the solution to the homogeneous case (where $r(x)=0$), so that

$$
y_{h}^{\prime}+a(x) y_{h}=0
$$

3. For now, assume

$$
y(x)=y_{h}(x) u(x)
$$

4. Plug in 3 to 1 :

$$
\begin{gathered}
\frac{d\left(y_{h}(x) u(x)\right)}{d x}+a(x) y_{h}(x) u(x)=r(x) \\
y_{h}^{\prime}(x) u(x)+y_{h}(x) u^{\prime}(x)+a(x) y_{h}(x) u(x)=r(x) \\
u(x) \underbrace{\left(y_{h}^{\prime}(x)+a(x) y_{h}(x)\right)}_{\text {This is 0, from step 2. }}+y_{h}(x) u^{\prime}(x)=r(x)
\end{gathered}
$$

$$
y_{h}(x) u^{\prime}(x)=r(x)
$$

Nonhomogeneous 1st-order Diff. Eq.

5. Continuing from:

$$
y_{h}(x) u^{\prime}(x)=r(x)
$$

6. divide both sides by $y_{h}(x)$:

$$
\frac{d u}{d x}=\frac{r(x)}{y_{h}(x)}
$$

7. Multiply both sides with $d x$:

$$
d u=\frac{r(x)}{y_{h}(x)} d x
$$

8. Integrate:

$$
\int d u=\int \frac{r(x)}{y_{h}(x)} d x
$$

$$
u=\int \frac{r(x)}{y_{h}(x)} d x+c
$$

9. Plug this in to $y(x)=y_{h}(x) u(x)$ to get:
$y(x)=y_{h}(x)\left(\int \frac{r(x)}{y_{h}(x)} d x+c\right)$
This called variation of parameters.

Numerical Solution of Diff. Eq. (not so sophisticated)

1. Given $f^{\prime}(x)$ and the initial condition $f(0)$
2. Take the Taylor series expansion of $f(x)$ around a :

$$
f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}+\ldots
$$

3. Drop higher order terms:

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)
$$

4. Set $x=t+\Delta t$ and $a=t$ for a small Δt :

$$
f(t+\Delta t) \approx f(t)+f^{\prime}(t)(t+\Delta t-t)=f(t)+f^{\prime}(t) \Delta t
$$

5. Starting with $f(0)$, the approximate values $\hat{f}(\cdot)$ becomes:

$$
\begin{gathered}
\hat{f}(\Delta t)=f(0)+f^{\prime}(0) \Delta t \\
\hat{f}(2 \Delta t)=\hat{f}(\Delta t)+f^{\prime}(\Delta t) \Delta t \\
\hat{f}(3 \Delta t)=\hat{f}(2 \Delta t)+f_{6}^{\prime}(2 \Delta t) \Delta t \text { and so on... }
\end{gathered}
$$

