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Learning a Class from Examples
 Class C of a “family car”

 Prediction: Is car x a family car?

 Knowledge extraction: What do people expect from a 
family car?

 Output: 

Positive (+) and negative (–) examples

 Input representation: 

x1: price, x2 : engine power
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Class C
   2121   power  engine   AND  price eepp 
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Error of h on H
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S, G, and the Version Space

7

most specific hypothesis, S

most general hypothesis, G

h H, between S and G is
consistent 
and make up the 
version space
(Mitchell, 1997)
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Computational Learning Theory (from Mitchell

Chapter 7)

• Theoretical characterization of the difficulties and capabilities of

learning algorithms.

• Questions:

– Conditions for successful/unsuccessful learning

– Conditions of success for particular algorithms

• Two frameworks:

– Probably Approximately Correct (PAC) framework: classes of

hypotheses that can be learned; complexity of hypothesis

space and bound on training set size.

– Mistake bound framework: number of training errors made

before correct hypothesis is determined.
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Computational Learning Theory

What general laws constrain inductive learning?

We seek theory to relate:

• Probability of successful learning

• Number of training examples

• Complexity of hypothesis space

• Accuracy to which target concept is approximated

• Manner in which training examples presented
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Specific Questions

• Sample complexity: How many training examples are needed for

a learner to converge?

• Computational complexity: How much computational effort is

needed for a learner to converge?

• Mistake bound: How many training examples will the learner

misclassify before converging?

Issues: When to say it was successful? How are inputs acquired?
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Sample Complexity

How many training examples are sufficient to learn the target concept?

1. If learner proposes instances, as queries to teacher

• Learner proposes instance x, teacher provides c(x)

2. If teacher (who knows c) provides training examples

• teacher provides sequence of examples of form 〈x, c(x)〉

3. If some random process (e.g., nature) proposes instances

• instance x generated randomly, teacher provides c(x)
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True Error of a Hypothesis
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Where c
and h disagree

Definition: The true error (denoted errorD(h)) of

hypothesis h with respect to target concept c and

distributionD is the probability that h will misclassify an

instance drawn at random according toD.

errorD(h) ≡ Pr
x∈D

[c(x) 6= h(x)]
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Two Notions of Error

Training error of hypothesis h with respect to target concept c

• How often h(x) 6= c(x) over training instances

True error of hypothesis h with respect to c

• How often h(x) 6= c(x) over future random instances

Our concern:

• Can we bound the true error of h given the training error of h?

• First consider when training error of h is zero (i.e., h ∈ V SH,D )
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Exhausting the Version Space

VSH,D

error =.1
=.2r error =.2

=0r

error =.1
=0r

error =.3
=.1r

error =.2
=.3r

error =.3
r =.4

Hypothesis space H

(r = training error, error = true error)

Definition: The version space V SH,D is said to be

ε-exhausted with respect to c andD, if every hypothesis h

in V SH,D has error less than ε with respect to c andD.

(∀h ∈ V SH,D) errorD(h) < ε
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How many examples will ε-exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis spaceH is finite, andD is a sequence ofm ≥ 1

independent random examples of some target concept c, then for

any 0 ≤ ε ≤ 1, the probability that the version space with respect

toH andD is not ε-exhausted (with respect to c) is less than

|H|e−εm

This bounds the probability that any consistent learner will output a hypothesis h

with error(h) ≥ ε
If we want this probability to be below δ

|H|e−εm ≤ δ

then

m ≥ 1

ε
(ln |H|+ ln(1/δ))
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Proof of ε-Exhasting Theorem

Theorem: Prob. of V SH,D not being ε-exhausted is≤ |H|e−εm .

Proof:

• Let hi ∈ H (i = 1..k) be those that have true error greater than ε wrt

c (k ≤ |H|).
• We fail to ε-exhaust the VS iff at least one hi is consistent with allm

sample training instances (note: they have true error greater than ε).

• Prob. of a single hypothesis with error> ε is consistent for one random

sample is at most (1− ε).

• Prob. of that hypothesis being consistent withm samples is (1− ε)m .

• Prob. of at least one of k hypotheses with error> ε is consistent withm

samples is k(1− ε)m .

• Since k ≤ |H|, and for 0 ≤ ε ≤ 1, (1− ε) ≤ e−ε :

k(1− ε)m ≤ |H|(1− ε)m ≤ |H|e−εm
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PAC Learning

Consider a class C of possible target concepts defined over a set of

instancesX of length n, and a learner L using hypothesis spaceH .

Definition: C is PAC-learnable by L usingH if for all

c ∈ C , distributionsD overX , ε such that 0 < ε < 1/2,

and δ such that 0 < δ < 1/2,

learner L will with probability at least (1− δ) output a

hypothesis h ∈ H such that errorD(h) ≤ ε, in time that

is polynomial in 1/ε, 1/δ, n and size(c).
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Agnostic Learning

So far, we assumed that c ∈ H . What if it is not the case?

Agnostic learning setting: don’t assume c ∈ H

• What do we want then?

– The hypothesis h that makes fewest errors on training data

• What is sample complexity in this case?

m ≥ 1

2ε2
(ln |H|+ ln(1/δ))

derived from Hoeffding bounds:

Pr[errorD(h) > errorD(h) + ε] ≤ e−2mε2
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Shattering a Set of Instances

Definition: a dichotomy of a set S is a partition of S into

two disjoint subsets.

Definition: a set of instances S is shattered by hypothesis

spaceH if and only if for every dichotomy of S there exists

some hypothesis inH consistent with this dichotomy.
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Three Instances Shattered
Instance space X

Each closed contour indicates one dichotomy. What kind of hypothesis

spaceH can shatter the instances?
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The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension,

V C(H), of hypothesis spaceH defined over instance

spaceX is the size of the largest finite subset ofX

shattered byH . If arbitrarily large finite sets ofX can be

shattered byH , then V C(H) ≡ ∞.

Note that |H| can be infinite, while V C(H) finite!
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VC Dim. of Linear Decision Surfaces

( )( )a b

• WhenH is a set of lines, and S a set of points, V C(H) = 3.

• (a) can be shattered, but (b) cannot be. However, if at least one

subset of size 3 can be shattered, that’s fine.

• Set of size 4 cannot be shattered, for any combination of points

(think about an XOR-like situation).
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VC Dimension: Another Example

S = {3.1, 5.7}, and hypothesis space includes intervals

a < x < b.

• Dichotomies: both, none, 3.1, or 5.7.

• Are there intervals that cover all the above dichotomies?

What about S = x0, x1, x2 for an arbitrary xi? (cf. collinear points).
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Sample Complexity from VC Dimension

How many randomly drawn examples suffice to ε-exhaust V SH,D
with probability at least (1− δ)?

m ≥ 1

ε
(4 log2(2/δ) + 8V C(H) log2(13/ε))

V C(H) is directly related to the sample complexity:

• More expressiveH needs more samples.

• More samples needed forH with more tunable parameters.
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Mistake Bounds

So far: how many examples needed to learn?

What about: how many mistakes before convergence?

• This is an interesting question because some learning systems

may need to start operating while still learning.

Let’s consider similar setting to PAC learning:

• Instances drawn at random fromX according to distributionD.

• Learner must classify each instance before receiving correct

classification from teacher.

• Can we bound the number of mistakes learner makes before

converging?
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Mistake Bounds: Halving Algorithm

Consider the Halving Algorithm:

• Learn concept using version space Candidate-Elimination or

List-Then-Eliminate algorithm (no need to know details about

these algorithms).

• Classify new instances by majority vote of version space

members.

How many mistakes before converging to correct h?

• ... in worst case?

• ... in best case?
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Mistake Bound of Halving Algorithm

• Start with version space =H .

• Mistake is made when more than half of the h ∈ H misclassified.

• In that case, at most half of h ∈ V S will be eliminated.

• That is, each mistake reduces the V S by half.

• Initially |V S| = |H|, and each mistake halves the V S, so it

takes log2 |H| mistakes to reduce |V S| to 1.

• Actual worst-case bound is blog2 |H|c.
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Optimal Mistake Bounds

LetMA(C) be the max number of mistakes made by algorithmA to

learn concepts in C . (maximum over all possible c ∈ C , and all

possible training sequences)

MA(C) ≡ max
c∈C

MA(c)

Definition: Let C be an arbitrary non-empty concept class. The

optimal mistake bound for C , denotedOpt(C), is the minimum

over all possible learning algorithmsA ofMA(C).

Opt(C) ≡ min
A∈learning algorithms

MA(C)

V C(C) ≤ Opt(C) ≤MHalving(C) ≤ log2(|C|).
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Mistake Bounds and VC Dimension

Littlestone (1987) showed:

V C(C) ≤ Opt(C) ≤MHalving(C) ≤ log2(|C|)
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Noise and Model Complexity
Use the simpler one because
 Simpler to use 

(lower computational 

complexity)

 Easier to train (lower 

space complexity)

 Easier to explain 

(more interpretable)

 Generalizes better (lower 

variance - Occam’s razor)
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Multiple Classes, Ci i=1,...,K
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Train hypotheses 
hi(x), i =1,...,K:
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Regression
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Model Selection & Generalization
 Learning is an ill-posed problem; data is not sufficient to 

find a unique solution

 The need for inductive bias, assumptions about H
 Generalization: How well a model performs on new data

 Overfitting: H more complex than C or f 

 Underfitting: H less complex than C or f
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Triple Trade-Off
 There is a trade-off between three factors (Dietterich, 

2003):

1. Complexity of H, c (H),

2. Training set size, N, 

3. Generalization error, E, on new data

 As NE

 As c (H)first Eand then E
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Cross-Validation
 To estimate generalization error, we need data unseen 

during training. We split the data as

 Training set (50%)

 Validation set (25%)

 Test (publication) set (25%)

 Resampling when there is few data
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Dimensions of a Supervised 
Learner
1. Model: 

2. Loss function:

3. Optimization procedure:

 |xg

    
t

tt grLE  |,| xX
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 X|min arg* 

E
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