CPSC 633-600 (Total 100 + 20 points extra credit) Homework #4

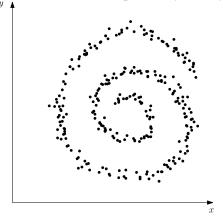
See course web page for the **due date**.

Instructor: Yoonsuck Choe

April 8, 2015 - REVISED (4/9 1pm)

1 Dimensionality reduction

Problem 1 (Written: 5 pts): Can PCA be an effective method for analyzing data sets like the data set (below)? Note that the data may include small noise. Explain why or why not.



Problem 2 (Written: 10 pts): Explain why it is important to select a proper ϵ value in Isomap. For example, what would happen when ϵ is too large? Discuss in the context of the data set shown above.

2 Local Methods

Problem 3 (Written: 15 pts): The SOM, given an input vector \vec{x} and the best matching unit index $i(\vec{x})$, the learning rule for the reference vector for unit j is:

$$\vec{w}_i \leftarrow \vec{w}_i + \eta h(j, i(\vec{x}))(\vec{x} - \vec{w}_i)$$

- (1) The learning rate is fixed $\eta = 1$.
- (2) Let h(j, i(x)) = 1, for the best matching unit j = i(x), h(j, i(x)) = 2/3 for its immediate neighbor (j = i(x) ± 1) and h(j, i(x)) = 1/3 for its second-order neighbor (j = i(x) ± 2). For all the rest, h(j, i(x)) = 0.

(3) Consider a 1-D SOM with 7 units with the following weight vectors. Plot the vectors and connect them according to the order given below ($\vec{w_1}$ connected to $\vec{w_2}$, etc.).

	w_1	w_2
\vec{w}_1	0	3
\vec{w}_2	9	8
\vec{w}_3	1	5
\vec{w}_4	4	3
\vec{w}_5	3	0
\vec{w}_6	0	7
\vec{w}_7	7	4

(4) Given an input vector $\vec{x} = (5, 3)$, plot how the weight vectors change after one iteration of training. Plot in the same graph as (3) above.

Problem 4 (Written: 10 pts): In radial basis function networks, among (a) the RBF units, (b) output units, and (c) RBF-to-output connections, which part is associated the most with "local" in "local learning"?

3 Conditional Independence

Problem 5 (Written: 10 pts): Consider three binary variables $a, b, c \in \{0, 1\}$ having the joint probability distribution given in the table below. Show by direct evaluation that this distribution has the property that a and b are dependent, so that $P(a, b) \neq P(a)p(b)$, but that they become independent when conditioned on b, so that P(a, b|c) = P(a|c)p(b|c) for both c = 0 and c = 1 [adapted from C. M. Bishop, *Pattern Recognition and Machine Learning*, Springer, 2006].

а	b	c	P(a,b,c)
0	0	0	0.36
0	0	1	0.04
0	1	0	0.04
0	1	1	0.06
1	0	0	0.18
1	0	1	0.12
1	1	0	0.02
1	1	1	0.18

Tabulate your results in the following format:

a	b	p(a,b)	p(a) p(b)
0	0		
0	1		
1	0		
1	1		

a	b	c	p(a,b c)	p(a c) p(b c)
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Problem 6 (Written: 10 pts): How is the above result related to the concept of conditional independence P(a|b,c) = P(a|c), a is independent from b given c? (derive P(a|b,c) = P(a|c) from P(a,b|c) =

P(a|c)p(b|c): **DO NOT** simply plug in the probability values from above).

4 Naive Bayes Classifier

Given two attributes a_1 and a_2 and the class v, consider the following conditional probabilities:

a_1	a_2	$P(a_1, a_2 v = \oplus)$
1	1	0.12
1	2	0.08
2	1	0.08
2	2	0.72
a_1	a_2	$P(a_1, a_2 v = \ominus)$
1	1	0.04
1	2	0.16
1 2	2 1	0.16 0.40

Assume that $P(v = \oplus) = 0.5$ and $P(v = \ominus) = 0.5$.

Problem 7 (Written: 10 pts): Calculate the following probabilities (some can be directly taken from the tables above):

- (1) $P(a_1 = 1, a_2 = 2 | v = \oplus)$
- (2) $P(a_1 = 1, a_2 = 2 | v = \ominus)$
- (3) $P(a_1 = 1 | v = \oplus)$
- (4) $P(a_1 = 1 | v = \ominus)$
- (5) $P(a_2 = 2|v = \oplus)$
- (6) $P(a_2 = 2|v = \ominus)$
- (7) $P(a_1 = 1, a_2 = 2)$

Problem 8 (Written: 10 pts): With the above,

(1) Calculate $P(v = \oplus | a_1 = 1, a_2 = 2)$ using Bayes rule:

$$\frac{P(a_1 = 1, a_2 = 2 | v = \oplus) P(\oplus)}{P(a_1 = 1, a_2 = 2)}$$

- (2) Repeat (1) for class $v = \ominus$.
- (3) Based on (1) and (2), what should be the decision?
- (4) Calculate $P(v = \oplus | a_1 = 1, a_2 = 2)$ using Naive Bayes:

$$\frac{P(a_1 = 1 | v = \oplus) P(a_2 = 2 | v = \oplus) P(\oplus)}{P(a_1 = 1, a_2 = 2)}$$

- (5) Repeat (4) for class $v = \ominus$.
- (6) Based on (4) and (5), what should be the decision?
- (7) Do the decisions in (3) and (6) differ? Explain why this is a good news or bad news for naive Bayes.

5 Bayesian Belief Network

Problem 9 (Written: 10 pts): Based on the table in problem 5 draw a Bayesian Belief Network (BBN) that correctly represents the conditional independence relation.

Problem 10 (Written: 10 pts): For each node in the BBN, calculate the probability table (prior or conditional probability) based on problem 5.

Problem 11 (Program: 20 pts): [optional: 20 point extra credit] Write a program to do Monte Carlo estimation of the conditional probability P(a|b). Generate three set of samples, with 10, 100, and 1000 instances, respectively, and empirically estimate P(a|b). Compare the simulation results from the three sets, and also calculate (by hand) the true P(a|b) from the table in problem 6. Are the results comparable?