CPSC 633-600 Homework 2, part I of II (Total 50 points) Reinforcement Learning
 See course web page for the due date.

Use ecampus.tamu.edu to submit your assignments, or submit a hard copy, but not to both.

Instructor: Yoonsuck Choe

February 19, 2014

1 Deterministic Case

Consider the following reinforcement learning problem.

S_{1}	S_{2}	S_{3}
S_{4}	S_{5}	S_{6}
S_{7}	${ }_{100}^{0} S_{8}^{100}$	

- There are 9 states, and the actions are $\{u p$, down, left, right $\}$. Legal actions are those that go to the immediate neighbor, horizontally or vertically (but not diagonally). Treat State $8\left(s_{8}\right)$ as having no legal action.
- The rewards for all action are 0 , except for all actions that lead into s_{8}, which are 100 .
- In all cases, assume $\gamma=0.9$.

Problem 1 (Program: 10 pts): Program a Q-learning algorithm to learn the $Q(s, a)$ values for the above example. Use the algorithm in slide04.pdf, Mitchell slide page 18 (pdf page 22). Stop learning when change in the Q table is 0 for the past 50 Q updates or so. Note: use a random policy to select action a given current state s (take care to check if the random action chosen is a legal one).
(1) Include your code.
(2) Show resulting Q table $(9 \times 4$ matrix $)$.

- Rows represent state and columns represent action.
- Row ordering should be $s_{1}, s_{2}, \ldots, s_{9}$.
- Column ordering should be up, down, left, right.
- Set $Q(s, a)=-99$ to mark illegal moves. Don't use this value during your calculations.
(3) Show a plot showing $\operatorname{sum}\left(\operatorname{abs}\left(Q_{t+1}-Q_{t}\right)\right)$ over the iterations t.

Problem 2 (Program: 10 pts): Modify the program from problem 1 so that the exploration policy is ϵ-greedy. Initialize your Q table with a very small random number to break the initial tie (rand * 0.0001).
(1) Include your code.
(2) Test $\epsilon \in\{0.0,0.2,0.5,1.0\}$. Note: $\epsilon=1.0$ is the greedy policy, and $\epsilon=0.0$ is the random policy.

If rand () > epsilon, choose random action. Otherwise, choose $[v a l, a]=\max (Q(s,:))$.
(3) Show resulting Q tables for all 4 cases (9×4 matrix).
(4) Show plots showing $\operatorname{sum}\left(\operatorname{abs}\left(Q_{t+1}-Q_{t}\right)\right)$ over the iterations t for all four cases.
(5) Discuss the effect of ϵ on the quality of the learned Q-table.

2 Stochastic Case

Consider a stochastic version of the reinforcement learning problem posed in Section 1. Modify the rules so that:

- $\delta(s, a)$ is stochastic: The probability of landing in the intended direction is 0.70 . The probability of landing in one of n unintended legal direction is $\frac{0.30}{n}$.
- Example $1:$ If you are in s_{5} and a was right, probability of landing in s_{6} is 0.70 , and ending up in s_{2}, s_{4}, or s_{8} is 0.10 each.
- Example 2: If you are in s_{1} and a was down, probability of landing in s_{2} is 0.70 , and ending up in s_{4} is 0.30 .
- Reward $r(s, a)$ depends on where you landed based on the above. All rewards are 0 unless the resulting state was the goal state s_{8}. For example, if you were in s_{5} and the action was $a=l e f t$, with 10% chance you will land in s_{9}, the goal state. In this case $r\left(s_{5}, l e f t\right)=100$. In a different run, if you landed in s_{4}, then $r\left(s_{5}\right.$, left $)=0$.

Problem 3 (Program: 10 pts): Repeat problem 1, with the stochastic version of the task (random policy). In addition to all the requirements, keep a running estimate of $E[r(s, a)]$ for states s_{5}, s_{7}, and s_{9} and report their final values. Use the learning rule in slide04.pdf, Mitchell slide page 31 (pdf page 35).
Estimating $E[r(s, a)]$ throughout the learning run:

$$
E[r(s, a)]=\frac{\sum_{\text {for all visits to }(s, a)^{r}}}{v i \operatorname{sits}(s, a)}
$$

Problem 4 (Program: 10 pts): Repeat problem 2, with the stochastic version of the task (ϵ-greedy policy with the four different ϵ values). In addition to all the requirements, keep a running estimate of $E[r(s, a)]$ for states s_{5}, s_{7}, and s_{9} and report the values. Use the learning rule in slide04.pdf, Mitchell slide page 31 (pdf page 35).
Problem 5 (Written: 5 pts): For states s_{5}, s_{7}, and s_{9}, manually compute $E[r(s, a)]$ (using the exact probabilities [note: it relates with $P\left(s^{\prime} \mid s, a\right)$ and the reward depending on state outcome s^{\prime}]) and compare those to the estimated values from problem 3 and problem 4. Are the results similar?

Problem 6 (Written: 5 pts): For states s_{5}, s_{7}, and s_{9}, using the estimated $E[r(s, a)]$ and all the estimated $\hat{Q}(s, a)$ values from your result in problem 3 above, see if the following holds:

$$
\hat{Q}(s, a)=E[r(s, a)]+\gamma \sum_{s^{\prime}} P\left(s^{\prime} \mid s, a\right) \max _{a^{\prime}} \hat{Q}\left(s^{\prime}, a^{\prime}\right)
$$

