
Communicating in Code:
Layout and Style

Programming Studio

Fall 2009

Note: several examples in this lecture taken from The Practice of Programming by Kernighan and Pike

Layout and Style

● Like naming, the goal is to 
communicate

● Again like naming, sometimes 
conventions are in place
– Adhering to the convention in place will 

usually lead to more readable code than 
using your own “better” convention

● Goal of layout and style is to increase 
clarity.

Fundamental Theorem of 
Formatting

• Good visual layout shows the logical 
structure of the program.

● Studies show that organization is as 
important to understanding as the 
“details”

White Space

● Used to indicate logical grouping
– Spacing between characters
– Indentation
– Blank lines



Indentation

● Can clarify structure, especially in odd cases.
● Studies show that 2-4 space indentation 

works best.
– More indentation might “appear” better, but is not.

● Now, usually editors provide automatically.
– But, variations for some statements:

● switch/case
● if/elseif

● Brace conventions differ, but be consistent.

Example Brace Conventions

while (something) {

blahblahblah

}

while (something)

{

blahblahblah

}

while (something) {

                                 blahblahblah

                               }

Parentheses

● Parentheses can resolve ambiguity
– Particularly important since order of operations can 

be problematic
● Better to use more parentheses than you think 

you need
● Coupled with white space, can more quickly 

highlight the grouping/ordering of operations
leap_year = y % 4 == 0 && y % 100 != 0 || y % 400 == 0;

 

Parentheses

● Parentheses can resolve ambiguity
– Particularly important since order of operations can 

be problematic
● Better to use more parentheses than you think 

you need
● Coupled with white space, can more quickly 

highlight the grouping/ordering of operations
leap_year = y % 4 == 0 && y % 100 != 0 || y % 400 == 0;

leap_year = ((y%4 == 0) && (y%100 != 0)) || (y%400 == 0);



Braces

● Like parentheses, use more braces 
than you need.

● One-statement operation often 
becomes more, later.

if (a > b)

    max = a;

Braces

● Like parentheses, use more braces 
than you need.

● One-statement operation often 
becomes more, later.

if (a > b)

    max = a;

    cout << “Set a new maximum.” << endl;

Braces

● Like parentheses, use more braces 
than you need.

● One-statement operation often 
becomes more, later.

if (a > b) {

    max = a;

}

Braces

● Like parentheses, use more braces 
than you need.

● One-statement operation often 
becomes more, later.

if (a > b) {

    max = a;

    cout << “Set a new maximum.” << endl;

}



Avoiding Complex 
Expressions

● Goal is not to write most concise and clever 
code.

● Break up expressions to make them clearer
● The “?” operator can be especially 

problematic
*x += (*xp=(2*k < (n-m) ? c[k+1] : d[k--]));

 

 

 

Avoiding Complex 
Expressions

● Goal is not to write most concise and clever 
code.

● Break up expressions to make them clearer
● The “?” operator can be especially 

problematic
*x += (*xp=(2*k < (n-m) ? c[k+1] : d[k--]));

if (2*k < n-m)

    *xp = c[k+1];

else

    *xp = d[k--];

*x += *xp;

Use “Natural Form” for 
Expressions

● State conditional tests positively
if (!(z>=0) && !(z<a))

Use “Natural Form” for 
Expressions

● State conditional tests positively
if (!(z>=0) && !(z<a))

if ((z<0) && (z>=a))

● This can vary if the way it’s expressed 
better matches the underlying 
algorithm



Use “idomatic” forms

● There are “common” ways of expressing 
certain things.
– e.g. Use a for loop appropriately – try to keep all 

loop control in the for statement, and keep other 
operations outside of the for statement

for (i=0;i<n;i++)

    a[i] = 0.0;

 

       

Use “idomatic” forms

● There are “common” ways of expressing 
certain things.
– e.g. Use a for loop appropriately – try to keep all 

loop control in the for statement, and keep other 
operations outside of the for statement

for (i=0;i<n;i++)

    a[i] = 0.0;

for (i=0;i<n;a[i++]=0.0);

 

Use “idomatic” forms

● There are “common” ways of expressing 
certain things.
– e.g. Use a for loop appropriately – try to keep all 

loop control in the for statement, and keep other 
operations outside of the for statement

for (i=0;i<n;i++)
    a[i] = 0.0;
for (i=0;i<n;a[i++]=0.0);
for (i=0;i<n;) {
    a[i] = 0.0;
    i++
}

Idiomatic forms

● e.g. use if elseif else form
if (cond1) {
    dothis1();
} else {
    if (cond2) {
        dothis2();
    } else {
        if (cond3) {
            dothis3();
        } else {
            dothis4();
        }
    }
}



Idiomatic forms

● Use if elseif else form
if (cond1) {

    dothis1();

} else if (cond2) {

    dothis2();

} else if (cond3) {

    dothis3();

} else {

    dothis4();

}

If statements

● Read so that you look for the “true” 
case rather than a “stack” of else cases

if (a > 3) {
    if (b < 12) {
        while (!EOF(f)) {
            dothis();
        }
    } else {
        cerr << “Error 2” << endl;
    }
} else {
    cerr << “Error 1” << endl;
}

If statements

● Read so that you look for the “true” 
case rather than a “stack” of else cases

if (a <= 3) {

    cerr << “Error 1” << endl;

} else if (b >= 12) {

    cerr << “Error 2” << endl;

} else {

    while (!EOF(f)) {

        dothis();

    }

}

Avoid Magic Numbers

● Rule of thumb: any number other than 
0 or 1 is probably a “magic number”

● Can lead to tremendous debugging 
problems when these numbers are 
changed

● Instead, define constants to give 
names to those numbers.



Layout for Control Structures

● Put control in one line when possible
● Single indentation level for what it 

affects
xxxxxx

    xxxxx

    xxxxx

● Group each part of a complicated 
condition on its own line

Layout of Individual 
Statements

● White space can improve readability
– Spaces after commas

EvaluateEmployee(Name.First,EmployeeID,Date.Start,Date.End);

EvaluateEmployee(Name.First, EmployeeID, Date.Start, Date.End);

– Spaces between parts of conditions
if (((a<b)||(c>d))&&((a+b)<(c-d))&&((c-d)>2))

if (((a<b) || (c>d)) && ((a+b)<(c-d)) && ((c-d)>2))

if (((a<b) || (c>d)) && 

    ((a+b) < (c-d))  && 

    ((c-d) > 2))

Layout of Individual 
Statements

● Line up related definitions or 
assignments

StudentName     = ProcessInputName();

StudentID       = ProcessInputID();

StudentHometown = ProcessInputName();

● Don’t use more than one statement per 
line.
– Likewise, define only one variable per line.

● Avoid side-effects (such as including 
the ++ operator when doing something 
else).

When a Line is Too Long

● Make it clear that the previous line is 
not ending (e.g. end with an operator)

● Keep related parts of the line together 
(don’t break single thought across line)

● Use indentation to highlight that there’s 
a continuation

● Make it easy to find the end of the 
continued line.



Layout of Routines

● Use standard indentation approach for 
arguments.

● Use blank lines to separate parts of 
routines or blocks of common actions

● Use comments (will return to) to identify 
major breaks in conceptual flow

Layout of Files

● Clearly separate (multiple line breaks) 
different routines in the same file
– Don’t want to accidentally “merge” or 

“break” individual routines
– Sequence files in a logical manner

● In order of header file definition
● In alphabetical order
● Constructor, accessor, destructor, other


