
SOLID Principles for

Object-Oriented Design

• CSCE 315: Programming Studio

• Instructor: Yoonsuck Choe

• Slides based on Robert Martin’s book and web

page: http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

• See the URL above for diagram notations.

• Topic motivated by Chris Weldon @ Improving.

1

SOLID Principles

• Acronym of acronyms:

– SRP: Single Responsibility Principle

– OCP: Open-Closed Principle

– LSP: Liskov Substitution Principle

– ISP: Interface Segregation Principle

– DIP: Dependency Inversion Principle

• Basically a set of principles for object-oriented

design (with focus on designing the classes).

2

History of SOLID

Robert C. Martin is the main person behind these ideas

(some individual ideas predate him though).

• First appeared as a news group posting in 1995.

• Full treatment given in Martin and Martin, Agile

Principles, Patterns, and Practices in C#, Prentice

Hall, 2006. (The PPP book)

• Lots of online learning material (find on your own).

3

Benefits of SOLID

• Provides a principled way to manage dependency.

• Serves as a solid foundation for OOD upon which

more complicated design patterns can be built upon

and incorporated naturally.

• Results in code that are flexible, robust, and

reusable.

4



First Pass at Understanding SOLID

• SRP: “A class should have one, and only one,

reason to change”.

• OCP: “You should be able to extend a class’s

behavior, without modifying it”

• LSP: “Derived classes must be substitutable for their

base classes.”

• ISP: “Make fine grained interfaces that are client

specific.”

• DIP: “Depend on abstrations, not on concretions.”

5

SRP: Single Responsibility Principle
Computational
Geometry
App

Graphical 
App

Rectangle

GUI

• Example: Rectangle class with draw() and area()

• Computational geometry now depends on GUI, via

Rectangle.

• Any changes to Rectangle due to Graphical

application necessitates rebuild, retest, etc. of

Comp. geometry app.

6

SRP: Cont’d
Computational
Geometry
App

Graphical 
App

Rectangle

Geometric
Rectangle GUI

• Solution: Take the purely computational part of the

Rectangle class and create a new class “Geometric

Rectangle”.

• All changes regarding graphical display can then be

localized into the Rectangle class.

7

SRP: Another example

• Modem: dial(), hangup(), send(), recv(), ...

• However, there are two separate kinds of functions

that can change for different reasons:

– Connection-related

– Data communication-related

• These two should be separated.

• Recall that “Responsibility” == “a reason to change”.

8



SRP: Summary

• “SRP is the simplest of the principles, and one of the

hardest to get right.”

• We tend to join responsibilities together.

• SRP says we need to go against this tendency.

9

OCP: Open-Closed Principle

• “All systems change during their life cycles.” (Ivar

Jacobson).

• “Software entities should be open for extension, but

closed for modification.” (variation on Bertrand

Meyer’s idea).

• Goal: avoid a “cascade of changes to dependent

modules”.

• When requirements change, you extend the

behavior, not changing old code.

10

OCP: Abstraction is Key

• Bad design: need to

change client code when new kinds of server needed.
Client Server

• Good design: can extend

to new types of servers without modifying client code.

Server
AbstractClient

Server
11

OCP: Data-Driven Approach

• In many cases, complete closure (closure to

modification) may not possible.

• Data-driven approach can be taken to minimize and

localize changes to a small region of code that only

contain data, not code.

• For example, there can be a table that contains a

specific ordering based on the requirements, where

the requirements are expected to change.

12



OCP: Foundation for Many

Heuristics

OCP leads to many heuristics and conventions.

• Make all member variables private.

• No global variables, EVER.

• Run time type identification (e.g., dynamic cast) is

dangerous.

• etc.

13

OCP: Summary

• OCP is “at the heart of OOD”.

• Simply using an OOP is not enough: Need

dedication to apply abstraction.

• OCP can greatly enhance reusability and

maintainability.

14

LSP: Liskov Substitution Principle

• “Functions that use pointers or references to base

classes must be able to use objects of derived

classes without knowing it.” (original idea due to

Barbara Liskov).

• Violation means the user class’s need to know ALL

implementation details of the derived classes of the

base class.

• Violation of LSP leads to the violation of OCP.

15

LSP: Example
Rectangle Class←− Square Class

• Problem: setWidth(), setHeight() in Rectangle class

assumes w and h are independently settable.

• When Square class is used where Rectangle class

is called for, behavior can be unpredictable,

depending on implementation.

• Want either setWidth() or setHeight() to set both

width and height in the Square class.

• LSP is violated when adding a derived class

requires modifications of the base class.
16



LSP: Lessons Learned

• Cannot assess vailidty of a class by just looking

inside a class: We must see how it is used.

• “ISA relationship pertains to behavior”, extrinsic,

public behavior!

– Square is a Rectangle, but they behave

differently, seen from the outside.

• For LSP to hold, ALL derived classes should

conform to the behavior that the clients expect of the

base classes.

17

LSP: Summary

• LSP is an important property that holds for all

programs that conform to the Open-Closed principle.

• LSP encourages reuse of base types, and allows

modifications in the derived class without damaging

other components.

18

ISP: Interface Segregation Principle

• “Clients should not be forced to depend upon

interfaces that they do not use.”

• Avoid “fat interfaces”.

• Fat interfaces: interfaces of a class that can be

broken down into groups that serve different set of

clients.

• Clients depending on a subset of interfaces need to

change when other clients using a different subset

changes.

19

ISP: Example

• Bad design
TimerClient

Door

TimedDoor

• Good design
Abstract
Door

Timed
Door

Abstract
TimerClient

DoorTimer
Adapter

Timed
Door

Door TimerClient

Clients that use Door or TimerClient access only

those speficied interfaces.



ISP: Summary

• Should avoid interfaces that are not specific to a

single client.

• Fat interfaces cause inadvertant coupling between

unrelated clients.

21

DIP: Dependency Inversion Principle

• “A. High level modules should not depend upon low

level modules. Both should depend upon

abstractions.”

• “ B. Abstractions should not depend upon details.

Details should depend upon abstractions.”

• DIP is an out-growth of OCP and LSP.

• “Inversion”, because standard structured

programming approaches make the higher level

depend on lower level.

22

DIP: The Problem

• Bad design:

– Hard to change (rigidity)

– Unexpected parts break when changing code

(fragility)

– Hard to reuse (immobility)

• Cause of bad design:

– Interdependence of the modules

– Things can break in areas with NO conceptual

relationship to the changed part.

– Dependent on unnecessary detail.
23

DIP: Example
Copy(): uses ReadKeyboard() and WritePrinter(char c);

• Copy() is a general (high-level) functionality we want

to reuse.

• The above design is tied to the specific set of

hardware, so it cannot be reused to copy over

diverse hardware components.

• Also, it needs to take care of all sorts of error

conditions in the keyborad and printer component

(lots of unncessary details creep in).

24



DIP: Diagnosis of Copy()

• Module containing high level policy (Copy) is

dependent upon low level detailed modules it

controls (WritePrinter, ReadKeyboard).

• Good design:

Abstract
Reader

Abstract
Writer

Printer
Writer

Keyboard
Reader

Copy

Encourages reuse of higher level policies.

25

DIP: Layering and Better Layering

• Bad Design
Policy Layer

Mechanism Layer

Utility Layer

• Good Design

Mechanism
Layer

Abstract
Utility Interface

Abstract
MechanismPolicy Layer

Utility Layer

Interface

Policy layer not dependent on lower levels, thus can

be reused. 26

DIP: Another Example

• Bad Design
LampButton

When button changes, lamp has to be at least

recompiled. Cannot reuse button for different device.

• Good Design
Abstract
Button

Abstract
ButtonClient

Button
Implementation

Lamp

Can further introduce LampAdapter.

27

DIP: Summary

• DIP promises many benefits of OO paradigm.

• Reusability is greately enhanced by DIP.

• Code can be made resilient to change by using DIP.

• As a result, code is easier to maintain.

28



SOLID Principles: Summary

• Help manage dependency.

• Improved maintainability, flexibility, robustness, and

reusability.

• Abstraction is important

29


