
CPSC 315 – Programming Studio

These are slides from Dr. John Keyser's 315 lecture

Consistent Data Transfer
 Transfer of data has become increasingly

important
 Can’t assume control of all ways data is

created and used
− Cross-platform, cross-system, etc.
− People want to access data for their own purposes
− People want to use data from several sources

 Data may be more complicated than
“traditional” formats would support

− E.g. ASCII text only good for some text documents
 Need a more universal means of transferring

data

Markup Languages
 Idea is to “tag” information to give a sense of its

meaning/semantics
 How that is handled is up to reader
 Usually separates presentation from structure
 Examples:

− HTML: standard web page information,
interpreted by browsers

− TeX/LaTeX: document specification, style
descriptions determine how it is laid out

XML
 eXtensible Markup Language
 Extensible: able to define additional “tags”

− Specific tags and the semantics associated
with them allow specifications of different
languages

 Developed by the World Wide Web Consortium
(W3C) to help standardize internet information
transfer

 Now used as the basis for many specialized
languages

− Each has its own semantic requirements

XML Characteristics
 Straightforward to use on the internet
 Easily processed/parsed
 Human-readable
 Capable of expressing wide range of

applications
− Including hierarchies, tables

 Can be very large/verbose

XML Document Text
 Intermingled character data and markups
 Markups:

− Start/End tags (and empty element tags)
− Entity/Character references
− Comments
− CDATA delimiters
− Processing Instructions
− XML/Text declarations
− Document type declarations

Basic XML Syntax
 Some prolog/header

− Possibly describing/referring to type of XML
 Single root element
 More elements forming a tree

− Elements fully “nest” inside each other
− Can have any number of children elements

 Elements begin with a start tag, end with an end
tag

− <Elem>Stuff in element</Elem>

Tag Format
 Starting Tags can declare attributes

− <TagName Attr1=“…” Attr2=‘…’>
− Note that attributes can use “ or ‘

 Ending Tags match starting tag name, but with
a / preceding

− </TagName>
 Character data (and maybe other elements) in

between start/end tags
 Empty element:

− <Elem/>
− Equivalent to <Elem></Elem>

Entity/Character References
 Note: Some character patterns are “reserved”

− <, >, &, ‘, “
 An entity reference is a name given to a

character or set of characters
− Used for any other things to be repeated

 General entity form: &Whatever;

− Used for the “reserved” chacters
 < <, > >, & &, " “, '

 ‘

Character References
 Character References are specialized
 Use the form &#…; where the … is a

reference to a character in an ISO
standard

− & is an &

Comments
 Begin with <!--
 End with -->
 Everything in between is ignored

<!-- This is a comment -->

CDATA sections
 Used to note a section that would

otherwise be viewed as markup data
 <![CDATA[…]]>
<![CDATA[This <a>isnotbad]]>

Processing Instructions
 Allow documents to contain instructions

for applications reading them
− “Outside” the main document

 <? Target … ?>
 Target is the target application name

− Any other instructions follow

<? MyReader -o3 -f input.dat ?>

XML/Text Declarations
 Documents should start with declaration

of XML type used, in a prolog:
− <?xml version=“1.0” ?>

 Other documents “included” should also
have such a prolog, as the first line

XML Semantics
 Semantics must be declared to determine what

is valid syntax
− Tags allowed and their attributes, entities
− Does not say how it is processed

 Can be located in XML document itself
 Can be contained in separate Document Type

Declaration (DTD)
 Newer XML Schema definitions, which capture

semantics in an XML-like document
− But drawbacks, including difficulty to use, not

as universally implemented, large size, etc.

Document Type Declaration:
DTD

 Defines constraints on the structure of the XML
 Comes before first element
 Either defines or points to external definition of

Document Type Definition (DTD)
 External: <!DOCTYPE Name SYSTEM url>
 Internal: <!DOCTYPE Name […]>
 The DTD can be standalone (no further external

references) or not

Element Declarations
 Define elements and allowed content (character

data, subelements, attributes, etc.)
 <!ELEMENT Name Content>

− Name is the unique name
− Content describes that type of element

 Options for Content:
− EMPTY – nothing allowed in the element
− ANY – no restrictions
− Children elements only
− Mixed character and children elements

Element Declarations: Child
element content

 When an element has (only) child
elements within it

 Specify using:
− Parentheses () for grouping
− The , for sequencing
− The | for “choice of”
− The + (one or more), * (zero or more), or
? (zero or one) modifiers.

 If no modifier, means “exactly once”

Example of Child elements
<!Element book (

title,

coverpage,

tableofcontents?,

editionnote*,

preface?,

(chapternumber, chaptertitle, chaptertext)+,

index?

)>

Element Declarations: Mixed
element content

 When an element can contain both
character and child elements

 The character text is denoted as a kind of
special element name: #PCDATA

<!ELEMENT story (#PCDATA|a|b|c)*>

Attribute Declarations
 Define allowed attribute names, their

types, and default values
 <!ATTLIST ElementName Attribute*>

− ElementName is the name of the element
those attributes belong to

− Repeat attribute definition as many times as
needed

Attribute Declaration: Types
 Name Type DefaultValue
 Name is the attribute name
 Type:

− CDATA : string
− Enumerated: specified via a comma-

separated list in parentheses
− Tokenized: a limited form, specified by some

other rule defined in the DTD
− Several variations

Attribute Declaration: Defaults
 Specify a default value

− Also specify whether attribute is needed in
the element

 #REQUIRED
− This attribute must be specified each time (no

default)
 #IMPLIED

− No default is specified
 Otherwise, use the default value given

− Precede by #FIXED if it must always take
that default

Attribute Declaration Example
<!ATTLIST Book

 title CDATA #REQUIRED

author CDATA “anonymous”

publisher CDATA #IMPLIED

category (fiction,nonfiction) “fiction”

language CDATA #FIXED ‘English’

>

Entity Declarations
 Entity References should be declared
 Internal Entity:

− <!ENTITY Name ReplacementText >
<!ENTITY CR “Copyright 2008”>
…
&CR;
 External Entity:

− <!ENTITY Name SYSTEM url >
<!ENTITY BP SYSTEM “http://this.com/BP.xml”>
…
&BP;

There are also other variations on external
entities

Parameter Entities
 Like general entities, but refer to entities

to be used in the Document Type
Declaration

 Use a % instead of an &
<!ENTITY % newdef SYSTEM
“http://this.com/newdef-xml.entities”>

…

%newdef;

Conditionals (in the DTD)
 Used in the DTD to apply different rules
 <![Condition[…]]>

− If Condition is INCLUDE then keep
− If Condition is IGNORE then skip

 Combine with parameter entities:
<!ENTITY % addborder ‘INCLUDE’>
…
<![%addborder;[
… (stuff to draw border) …
]]>

XML Namespaces
 Different XML definitions could define the

same element name.
 If we want to use both, could have

conflict.
 Can distinguish using namespaces.

<a:book>…</a:book>
<b:book>…</b:book>

Defining XML Namespaces
 xmlns attribute in definition of element

xmlns:prefixname=“URL”

<a:book
xmlns:a=http://this.com/adef>

 Can be defined in first use of element or
in XML root element.

 Can define a “default”
− No prefix needed, leave off : also

Summary/More Information
 XML has become a standard way of

transferring information, especially over
the internet

 Provides flexibility to represent a wide
range of data.

 Many texts/online tutorials about XML
 W3C “official” pages:

http://www.w3.org/XML/

See in particular the XML 1.0 specs (more
than the 1.1 specs)

