
Portability

CPSC 315 – Programming Studio
adapted from John Keyser's 315 slides

Material from The Practice
of Programming, by Pike and Kernighan

Portability

 Ability of software to run in more than
one environment

− Run the same with differing compilers
− Run the same on different operating

systems
 “Portable” often means it is easier to

modify existing code than rewrite from
scratch

Why Focus on Portability?

 Some drawbacks to portability:
− Known requirements don’t specify it
− Less efficient than less portable code

 But, requirements change
− People will want to run successful programs in new places

and ways
 Environments change

− OS gets “upgraded” – we want the code to improve, also
 Code itself could be ported!

− Java to C/C++
 Portability tends to reflect good programming

General Principles

 Will never have “fully” portable code,
but you can improve portability

 Try to use only the intersection of
standards, interfaces, environments
that it must support

 Don’t add special code to handle new
situations, instead adjust code to fit

 Abstraction and encapsulation help

Language Issues

 Stick to Language Standards
− Many languages aren’t standardized, and no

language is fully specified
− Even such languages have very common usage

patterns
 Program in the mainstream

− Stick to language constructs that are well-
understood

− Don’t use unusual language features or new
language additions

− Requires some familiarity with what “mainstream”
is.

Trouble Spots in Languages

 Sizes of data types
− int, long, pointers can vary
− Don’t assume length, beyond very well

established standards
 e.g. 8 bits in a byte

Trouble Spots in Languages

 Expressions: Order of Evaluation
− Often not clearly specified, or

implemented differently anyway

ptr[count] = name[++count]
 count could be incremented before or after

used to increment ptr
− Avoid reliance on specific order, even

when the language specifies
 Could port code, or compiler treat differently

Trouble Spots in Languages

 “Sign” of a char
− Could run -128 to 127, or 0 to 255

 Arithmetic and logical shifts
− How is sign bit handled? shifted or not?

 Byte order
− Big vs. Little endian

Trouble Spots in Languages

 Alignment of structures and class members
− Never assume that elements of a structure

occupy contiguous memory.
− Lots of machine-specific issues

 e.g. n-byte types must start on n-byte boundaries (bus
error)

− e.g. i could be 2, 4, or 8 bytes from start:
struct X {
 char c;
 int i;
}

Dealing with Language Issues

 General Rules of Thumb:
− Don’t use side effects
− Compute, don’t assume sizes of

types/objects
− Don’t (right) shift signed values
− Make sure data type is big enough for the

range of values you will store
 Try several compilers

Headers and Libraries

 Use standard libraries when available
− Realize that these are not necessarily universal, though
− Different implementations may have different “features”

 Careful about using lots of #ifdefs to catch
language/environment changes

− Easily leads to convoluted header files that are difficult to
understand and maintain

 Choose widely-used and well-established standards
− networking interfaces
− graphics interfaces

Program Organization

 Use only features that are available in
all target systems

 Avoid conditional compilation
(#ifdefs)

− Especially bad to mix compile-time with
run-time commands

− Makes it difficult to test on different
systems, since changes actual program!

Isolation

 Localize system dependencies in different
files

− e.g. single file to capture unix vs. Windows
system calls.

− Sometimes these system files can have a
life/usefulness of their own

 Hide system dependencies behind interfaces
− Good encapsulation should be done, anyway
− Java does this fully with virtual machine

Data Exchange

 Text tends to provide good data exchange
− Much more portable than binary
− Still an issue of Carriage Return vs. Carriage

Return and Line Feed
 Byte Order matters

− Big vs. Little Endian is a real issue
− Be careful in how you rely on it

 Use a fixed byte order for data exchange
− Write in bytes rather than larger formats

Upgrading with Portability In
Mind

 If function specification changes, change the function
name

− e.g.: The sum function (for checksum to see if files were
transferred correctly) in Unix has changed implementations,
making it nearly useless sometimes

 Maintain compatibility with earlier programs and data
− Provide a write function, not just a read function for earlier

data formats
− Make sure there is a way to replicate the old function

 Consider whether “improvement” is worth it in terms
of portability cost

− Don’t “upgrade” function if it will provide only limited benefit,
but can potentially cause portability problems.

Internationalization

 International standards vary
 Don’t assume ASCII

− Some character sets require thousands of characters
− 8-bit vs. 16-bit characters
− Unicode helps

 Careful about culture/language issues
− Date and time format
− Text field lengths
− Idioms and slang
− Icons

