
Debugging

CPSC 315 – Programming Studio

Bugs

 Term has been around a long time
− Edison
− Mark I – moth in machine

 Mistake made by programmers
 Also (and maybe better) called:

− Errors
− Defects
− Faults

Sources of Bugs

 Bad Design
− Wrong/incorrect solution to problem
− From system-level to statement-level

 Insufficient Isolation
− Changes in one area affect another

 Typos
− Entered wrong text, chose wrong variable

 Later changes/fixes that aren’t complete
− A change in one area affects another

Debugging in Software 
Engineering

 Programmer speed has high correlation 
to debugging speed

− Best debuggers can go up to 10 times 
faster

 Faster in finding bugs
 Find more bugs
 Introduce fewer new bugs



Ways NOT to Debug

 Guess at what’s causing it
 Don’t try to understand what’s causing it
 Fix the symptom instead of the cause

− Special case code
 Blame it on someone else’s code

− Only after extensive testing/proof
 Blame it on the compiler/computer

− Yes, it happens, but almost never is this the real 
cause

An Approach to Debugging

Stabilize the error
Locate the source
Fix the defect
Test the fix
Look for similar errors

Goal: Figure out why it occurs and fix 
it completely

1. Stabilize the Error

 Find a simple test case to reliably 
produce the error

− Narrow it to as simple a case as possible
 Some errors resist this

− Failure to initialize
− Pointer problems
− Timing issues

1. Stabilizing the Error

 Converge on the actual (limited) error
− Bad: “It crashes when I enter data”
− Better: “It crashes when I enter data in 

non-sorted order”
− Best: “It crashes when I enter something 

that needs to be first in sorted order”
 Create hypothesis for cause

− Then test hypothesis to see if it’s accurate



2. Locate the Source

 This is where good code design helps
 Again, hypothesize where things are 

going wrong in code itself
− Then, test to see if there are errors 

coming in there
− Simple test cases make it easier to check

When it’s Tough to Find 
Source

 Create multiple test cases that cause same 
error

− But, from different “directions”
 Refine existing test cases to simpler ones
 Try to find source that encompasses all 

errors
− Could be multiple ones, but less likely

 Brainstorm for sources, and keep list to 
check

 Talk to others
 Take a break

Finding Error Locations

 Process of elimination
− Identify cases that work/failed hypotheses
− Narrow the regions of code you need to check
− Use unit tests to verify smaller sections

 Process of expansion:
− Be suspicious of:

 areas that previously had errors
 code that changed recently

− Expand from suspicious areas of code

Alternative to Finding Specific 
Source

 Brute Force Debugging
− “Guaranteed” to find bug
− Examples:

 Rewrite code from scratch
 Automated test suite
 Full design/code review
 Fully output step-by-step status

 Don’t spend more time trying to do a “quick” 
debug than it would take to brute-force it.



3. Fix the Defect

 Make sure you understand the problem
− Don’t fix only the symptom

 Understand what’s happening in the 
program, not just the place the error 
occurred

− Understand interactions and 
dependencies

 Save the original code
− Be able to “back out” of change

Fixing the Code

 Change only code that you have a 
good reason to change

− Don’t just try things till they work
 Make one change at a time

4. Check Your Fix

 After making the change, check that it 
works on test cases that caused errors

 Then, make sure it still works on other 
cases

− Regression test
− Add the error case to the test suite

5. Look for Similar Errors

 There’s a good chance similar errors 
occurred in other parts of program

 Before moving on, think about rest of 
program

− Similar routines, functions, copied code
− Fix those areas immediately



Preventing Bugs
Or Finding Difficult Ones

 Good Design
 Self-Checking code
 Output options

− Print statements can be your friend…

Debugging Tools

 Debuggers
− Often integrated
− Can examine state in great detail

 Don’t use debuggers to do “blind probing” 
− Can be far less productive than thinking harder 

and adding output statements
− Use as “last resort” to identify sources, if you 

can’t understand another way

Non-traditional Debugging 
Tools

 Source code comparators (diff)
 Compiler warning messages
 Extended syntax/logic checkers
 Profilers
 Test frameworks


