
App Development for Mobile
Devices
Jaerock Kwon, Ph.D. Assistant Professor in Computer Engineering, Kettering Univ.

Edits by Yoonsuck Choe

Announcement 2

Kettering University

Lecture 2
Application Fundamentals

3

Kettering University

Today’s Topics

◼Application components
◼ Activity

◼ Intent

◼ App manifest

◼Application resources

4

Kettering University

Android Applications

5

Kettering University

Android Application

◼Written in Java

◼The compiled Java code along with resource files and data is
bundled by aapt tool into an Android package.
◼ aapt (Android Asset Packaging Tool)

◼ Probably you will not use this directly.

◼ IDE plugins utilizes this tool to package the apk file.

◼ Android package:

◼ A single archive file. Its filename extension is .apk.

◼ This apk file is the file that users download to their devices.

◼Linux process
◼ Every application runs in its own Linux process.

◼ Each process has its own virtual machine.

6

Kettering University

Central Features of Android

◼An application can use elements of other applications (should be
permitted by the apps).
◼ For this to work, an application process can be started when any part

of it is needed and instantiate the Java objects for that part.

◼ Therefore, Android apps don’t have a single entry point (like main()
function).

◼ Rather they have essential components that the system can
instantiate and run as needed.

◼Four types of components
◼ Activities

◼ Services
◼ Broadcast receivers
◼ Content providers

7

Kettering University

Application Components

8

Kettering University

Activities

◼Application’s presentation layer.

◼Every screen in you app is an extension of the Activity class.

◼Each activity is given a default window to draw in.

◼Activities use Views to form GUI.
◼ Each view controls a particular rectangular space within the window.

◼ Views are where the activity’s interaction with the user takes place.

◼ ContentView is the root view object in the hierarchy of views.

◼Activity.setContentView() method.

◼Activity is equivalent to Form in desktop environment.

9

Kettering University

MainActivity

◼setContentView

◼Event driven
◼ onCreate

◼ onCreateOptionsMenu

1
0

Kettering University

public class MainActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it is present.
 getMenuInflater().inflate(R.menu.main, menu);
 return true;
 }
}

Intents

◼An Intent is an object that provides runtime binding between
separate components.

◼The Intent represents “an app’s intent to do something.”

◼Then, the system will determine the target(s) that will perform
any actions as appropriate.

◼startActivty() or startActivityForResult()
◼ The responding activity can look at the initial intent that caused it to

be launched by calling getIntent().

1
1

Kettering University

An inter-app message passing framework

Start Another Activity
Using an Intent Object

Kettering University

1
2

Create an Activity

◼Let us create an activity first.
◼ New.. Android Activity.. Blank Activity.

◼ Its name is “DisplayMessageActivity.”

◼ Note that “Hierarchical Parent:” must be the activity that we made in
the first lecture. (edu.kettering.hellokettering.MainActivity).

◼That’s it for now.

1
3

Kettering University

Build an Intent

◼The first parameter ‘this’ is the Activity class that is a subclass of
Context.

◼The second parameter is the ‘class’ of the new Activity we’ve
created.

1
4

Kettering University

Inside the sendMessage() method

Intent intent = new Intent(this, DisplayMessageActivity.class);

Extras

◼An Intent can carry a collection of data types as key-value pairs
called extras.

◼Key-Value pairs
◼ You can refer to a value from a unique key.

◼It is a good practice to define keys for intent extras using your
app’s package name as a prefix.

1
5

Kettering University

Intent intent = new Intent(this, DisplayMessageActivity.class);
EditText editText = (EditText) findViewById(R.id.edit_message);
String message = editText.getText().toString();
intent.putExtra("edu.kettering.hellokettering.MESSAGE", message);

Receive the Intent

◼DisplayMessageActivity can get the extra using getStringExtra.

◼Put these lines at the end of onCreate in the
DisplayMessageActivity class.
◼ Intent intent = getIntent();

◼ String message =
intent.getStringExtra("edu.kettering.hellokettering.MESSAGE");

◼Open “activity_display_message.xml”
◼ Add android:id="@+id/textViewMessage" to the TextView.

◼Back to the DisplayMessageActivity.java and add the lines below.
◼ TextView textViewMessage =

(TextView)findViewById(R.id.textViewMessage);

◼ textViewMessage.setText(message);

1
6

Kettering University

Display the Message

Intent and Intent Object

17

Intents Object and Intent
Filters

◼ Intent Object
◼ An abstract description of an operation to be performed.

◼ Android system finds the appropriate activity, service, or set of
broadcast receivers to respond to the intent.

◼ Two groups of intents
◼ Explicit intents: (e.g. the previous example)

◼ They name the target component.
◼ Component names are not known to developers of other apps.
◼ So they are used for application internal messages.

◼ Implicit intents: (see the next slides)
◼ They are often used to activate components in other apps.

◼ For implicit intents
◼ Need to test the intent object against Intents Filters associated with

potential target.

1
8

Kettering University

Intent Structure

◼Intent Objects contains information of component that receives
the intent and the Android system

◼Intent Objects contains (Primary pieces of information)
◼ Action

◼ A string naming the action to be performed.
◼ Examples

◼ ACTION_CALL: Initiate a phone call
◼ ACTION_VIEW:
◼ ACTION_EDIT: Display data for the user to edit
◼ ACTION_MAIN: Start up as the initial activity of a task
◼ ACTION_BATTERY_LOW: A WARNING THAT THE BATTERIY IS LOW

◼ Data
◼ The URI of the data to be acted on.

1
9

Kettering University

Intent Structure - continued

◼ Examples of action/data pairs

◼ ACTION_VIEW content://contacts/people/1 – Display info about the
person whose id is “1”

◼ ACTION_VIEW tel:555-123-4567 – Display phone dialer with the
given number

◼ ACTION_EDIT content://contacts/people/1 – Edit info about the
person whose id is “1”

◼ Category

◼ Examples:

◼ CATEGORY_HOME: The activity displays the home screen.

◼ CATEGORY_LAUNCHER: The activity can be the initial activity
and is listed in the top-level application launcher.

2
0

Kettering University

Intent Filters

◼Intents should be resolved since implicit intents do not name a
target component.

◼Intent filters are generally in the app’s manifest file
(AndroidManifest.xml)

◼Most apps have a way to start fresh. The following action and
category are default values of an Android project.
<intent-filter>

<action android:name="android.intent.action.MAIN" />
 <category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>

2
1

Kettering University

Note Pad Example

◼ There are three activities: NotesList, NoteEditor, and TitleEditor
◼ <activity android:name=”.NotesList" android:label="@string/title_notes_list”>

…
</activity>
<activity android:name=”.NoteEditor” ...
…
</activity>
<activity android:name=”.TitleEditor” ...
…
</activity>

◼ Each activity has intent-filters. Followings are from NotesList activity.
◼ <intent-filter>

 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
<intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <action android:name="android.intent.action.EDIT" />
 <action android:name="android.intent.action.PICK" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="vnd.android.cursor.dir/vnd.google.note" />
</intent-filter>

◼ The second intent filter declares that the activity can VIEW, EDIT, PICK
in the data URI.

2
2

Kettering University

Start as a
main entry
point

Allow the activity to be launched without
explicitly specifying its component

A Simple Dialer

◼Your program should have something like…
String number = "tel:810-555-1234”;
Intent callIntent = new Intent(Intent.ACTION_CALL, Uri.parse(number));
startActivity(callIntent);

◼Do not forget to add the permission for phone call in your App
Manifest XML file.
uses-permission android:name="android.permission.CALL_PHONE"

2
3

Kettering University

Shutting down Components

◼An activity can be shut down by calling its finish() method.

◼A service can be stopped by calling its stopSelf() or
Context.stopService().

2
4

Kettering University

App Manifest

◼ Each Android project includes a manifest file, AndroidManifest.xml for all
apps (same name).

◼ A structured XML file.

◼ The principal task of it is to inform Android about the app’s components.
◼ <activity>, <service>, <receiver> elements

<?xml version="1.0" encoding="utf-8"?>

<manifest . . . >

 <application . . . >

 <activity android:name=”edu.kettering.project.FreneticActivity"

 android:icon="@drawable/small_pic.png"

 android:label="@string/freneticLabel"

 . . . >

 </activity>

 . . .

 </application>

</manifest>

2
5

Kettering University

App Manifest - Intent Filters

◼IFs declare the capabilities of its parent component.
◼ What an activity or service can do and what types of broadcasts a

receiver can handle.

◼Action “android.intent.action.MAIN” and category
“android.intent.category.LAUNCHER” is the most common
combination.
◼ Note: application launcher: the screen listing apps where users can

launch an app.

◼The activity is the entry point for the app.

2
6

Kettering University

<intent-filter . . . >
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

Activity, Tasks, and
Processes

Kettering University

2
7

Activities, Tasks, and
Processes

◼One activity can start another including one in a different app.
◼ Example:

◼ Your activity needs to display a street map.

◼ Assuming there is an activity that can do this.

◼ You activity put together an Intent object and pass it to
startActivity().

◼Definitions
◼ Activity

◼ The… Android ‘Activity’

◼ Task

◼ A stack of activities

◼ Process

◼ A standard Linux process

2
8

Kettering University

Activities, Tasks, and
Processes 2

9

Kettering University

Activit
y

Activity

Content
Provider

Service

Proces
s

.apk Package

Activity

Content
Provider

Proces
s

.apk Package

Proces
s

Service

Activities, Tasks, and
Processes 3

0

Kettering University

Activit
y

Activity

Content
Provider

Service

Proces
s

.apk Package

Activity

Content
Provider

Proces
s

.apk Package

Proces
s

Service

Task

Process and Thread

◼Application components are Linux processes.
◼ When the first of an app’s components needs to be run, Android starts

a Linux process for it with a single thread of execution.

◼Process
◼ It is controlled by the Manifest file.

◼Thread
◼ User interface should always be quick to respond to user actions.

◼ Anything that may not be completed quickly should be assigned to a
different thread.

◼ Threads are created in code using standard Java Thread objects.

◼ Android also provides many convenient classes for managing
threads.

3
1

Kettering University

Activity Life Cycle

Kettering University

3
2

Android Activity Lifecycle

◼An activity has three states:
◼ Active, or running:

◼ When it is in the foreground of the screen.

◼ Paused:

◼ When it lost focus but is still visible to the user.

◼ Stopped:

◼ When it is completely obscured by another activity.

◼ It still remains all state and member information.

◼ It may be killed by the system when memory is needed elsewhere.

◼Note: When an activity is paused or stopped, the system can
drop it from memory or simply kill its process.

3
3

Kettering University

Android Activity Lifecycle 3
4

Kettering University

Android Activity Lifecycle

◼Entire life time of an activity
◼ onCreate() – onDestrory()

◼Visible life time
◼ onStart() – onStop()

◼Foreground life time
◼ onResume() – onPause()

3
5

Kettering University

void onCreate(Bundle savedInstanceState)
void onStart()
void onRestart()
void onResume()
void onPause()
void onStop()
void onDestroy()

Android Activity Lifecycle

◼Since the system can shut down an activity, the user may expect
to return to the activity and find it in its previous state.

◼onSaveInstanceState()
◼ Android calls this method before making the activity to being

destroyed.

◼onRestoreInstanceState()
◼ Android calls onRestoreInstanceState() after calling onStart().

◼Note that these two methods are not lifecycle methods.
◼ They are not called in a proper lifecycle step.

◼ You cannot rely on these methods to save some persistent data.

3
6

Kettering University

Saving Activity State

Application Resources

Kettering University

3
7 Resource Externalization

◼Externalizing resources such as images and strings
◼ You can maintain them separately from your actual code.

◼ This allows you to provide alternative resources that support different
languages, different screen sizes.

◼ This is extremely important because Android-powered devices
become available with different configurations.

3
8

Kettering University

Grouping Resource Types

◼Place resources in a specific subdirectory of your project’s res/
directory.

◼Resource directories supported inside project res/ directory.

3
9

Kettering University

Directory Type

anim/ Define tween animation

color/ Define a state list of colors

drawable/ Bitmap files or XML files that

layout/ Define user interface layout

menu/ Options Menu, Context Menu, or Sub Menu

raw/ Arbitrary files to save in their raw form

values/ Strings, integers, colors

xml/ Arbitrary XML files

Providing Alternative
Resources

◼ To specify configuration-specific alternatives for a set of resources:
◼ Create a new directory in res/ named in the form <resources_name>-

<config_qualifier>.
◼ <resources_name> is the directory name of the corresponding default resources.
◼ <qualifier> is a name that specifies an individual configuration for which these

resources.
◼ You can append more than one <qualifier>. Separate each one with a dash.
◼ Save the respective alternative resources in this new directory. The resource files

must be named exactly the same as the default resource files.

◼ For example, here are some default and alternative resources:

res/

 drawable/

 icon.png

 background.png

 drawable-hdpi/

 icon.png

 background.png

4
0

Kettering University

Creating Resources

◼ String
◼ <string name=“your_name”>Kettering</string>

◼ Color
◼ <color name=“transparent_blue”>#770000FF</color>
◼ Format

◼ #RGB
◼ #RRGGBB
◼ #ARGB
◼ #AARRGGBB

◼ Dimensions
◼ <dime name=“border”>5dp</dimen>
◼ Scale identifier

◼ px (screen pixels)
◼ in (physical inches)
◼ pt (physical points)
◼ mm (physical millimeters)
◼ dp (density independent pixels relative to a 160-dpi screen)
◼ sp (scale independent pixels) – for font size

4
1

Kettering University

Simple Values

Supporting Different Screens

◼Four general categorized device screens:
◼ Sizes: small, normal, large, xlarge
◼ Densities: low(ldpi), medium (mdpi), high(hdpi), extra high (xhdpi).

◼Create different layouts
◼MyProject/
 res/
 layout/
 main.xml
 layout-large/
 main.xml

◼ Simply reference the layout file in your app as usual.

4
2

Kettering University

@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
}

Supporting Different Screens

◼ Create different bitmaps
◼ xhdpi: 2.0
◼ hdpi: 1.5
◼ mdpi: 1.0 (baseline)
◼ ldpi: 0.75

◼ This means that if you generate a 200x200 image for xhdpi devices, you
should generate the same resource in 150x150 for hdpi, 100x100 for mdpi,
and 75x75 for ldpi devices.

◼ Then place the files in the appropriate drawable directories

4
3

Kettering University

MyProject/
 res/
 drawablexhdpi/
 awesomeimage.png
 drawablehdpi/
 awesomeimage.png
 drawablemdpi/
 awesomeimage.png
 drawableldpi/
 awesomeimage.png

Creating Resources

◼Drawable
◼ Drawable resources include bitmaps and NinePatch (stretchable PNG)

images.

◼Layouts
◼ Layout resources let you decouple your app’s presentation layer.

◼ Designing user interfaces in XML rather than constructing them in
code.

4
4

Kettering University

Accessing Resources

◼ You can refer a resource via its ID.

◼ R class
◼ All resource IDs are defined in your project’s R class.
◼ The R class is automatically generated by the aapt tool.

◼ Resource ID
◼ A resource ID has a unique name and is composed of:

◼ Resource type:
◼ string, drawable, layout, etc.

◼ Resouce name:
◼ Either the filename (excluding the extension) or the value in the XML

android.name attribute, if the resource is a simple value such as a string,
a color.

◼ Accessing a resouce: string is a resource type. hello is a resource
name
◼ In code: R.string.hello
◼ In XML: @string/hello

4
5

Kettering University

Layout Manager

Kettering University

4
6

Layout Manager

◼Layout is a subclass of ViewGroup
◼Details will be explained in aLecture 3.

◼RelativeLayout
◼Relative positions wrt. Parent or Siblings

◼LinearLayout
◼Horizontal

◼Vertical

◼FrameLayout

◼GridLayout

4
7

Kettering University

Layout Definition

◼Layout is an architecture about user interfaces in an Activity

◼Two ways of definition of layouts
◼ XML

◼ Use resource editor to make layout.

◼ ADT provides the preview of an XML file.

◼ The best way is to make a layout is using both the XML editor and
the XML graphical editor.

◼ In code

◼ Create Views and ViewGroups in runtime.

4
8

Kettering University

XML for Resource

◼Only one root element that should be a View or a ViewGroup.

◼Add child elements to the root view.

4
9

Kettering University

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >
 <TextView android:id="@+id/text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello, I am a TextView" />
 <Button android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello, I am a Button" />
</LinearLayout>

XML Resource Load

◼When you compile your source code, each XML layout file is
compiled into a View resource.

◼You should load it in your Activity.onCreate().

◼XML file: res/layout/*.xml
◼ If the xml file name is main.xml, then the layout can be accessed by
R.layout.main in your source code.

5
0

Kettering University

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
}

ID of Element

◼ Any View object has a unique ID.

◼ In your XML code, the ID is defined with a string.
◼ android:id=“@+id/myButton”
◼ @ indicates the rest of the string should be identified as an ID resource.
◼ + means adding new resource name.

◼ In your source code, the ID can be referred by an integer.
◼ Button myButton = (Button)findViewById(R.id.myButton);

◼ Example:

5
1

Kettering University

In XML …
<Button android:id="@+id/myButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/my_button_text"/>

In source code …
Button myButton = (Button) findViewById(R.id.myButton);

Further Readings

Kettering University

5
2

Services

◼No visual interface.

◼Runs in the background of an indefinite period of time.

◼Examples:
◼ Play background music, fetch data over the network.

◼Each service extends the Service base class

◼It is possible to connect to an ongoing service (and start the
service if it is not already running).
◼ You can communicate with service through an interface that the

service exposes.
◼ Examples: start, pause, stop, restart playback.

◼Services run in the main thread of the application process.
◼ It is not a sub thread of other components.

5
3

Kettering University

Broadcast Receivers

◼A Broadcast Receiver receives and reacts to broadcast
announcements.

◼Broadcast examples from the system
◼ The timezone change, the battery is low, a picture has been taken,

and etc.

◼An application can have any number of receivers to respond to
any announcements.

◼BRs do not display user interface.

◼BRs can start an activity in response to the information they
receive.

5
4

Kettering University

Questions?

5
5

Kettering University

