

Lecture 1 Introduction to Android

Jaerock Kwon, with edits by Yoonsuck Choe (October 2015)

Kettering University

Android

Today's Topics

Android IntroductionBuilding your first app!

Kettering University

1

3

What is Android?

- ■An open source software stack that includes
 - Operating system
 - Linux operating system kernel that provides low level interface with the hardware, memory management, and process control.
 - Middleware
 - A run time to execute Android applications including Dalvik virtual machine (and the more recent ART runtime) and core libraries.
 - Key mobile applications
 - Email, SMS, PIM, web browser, and etc.
 - Along with API libraries for writing mobile applications.
 - Including open-source libraries such as SQLite, WebKit, and OpenGL ES.
- Open-source development platform for creating mobile applications. Kettering University

Android

Complete

Open

Equal

and key mobile apps.

■ It was built to truly open.

■ All apps are created equal.

Equal access to a phone's capabilities.

Breaking down app boundaries

Fast & easy app development

5

7

Android SDK Features

- No licensing, distributions, or development fees or release approval processes.
- GSM, EDGE, and 3G networks for telephony and data transfer
- Full multimedia hardware control
- APIs for using sensor hardware including accelerometer and the compass.
- APIs for location based services
- IPC
- Shared data storage
- Background applications and processes.
- Home screen widgets, Live Folders.
- HTML5 WebKit-based web browser

And many more... Kettering University

Android SDK

- The Android SDK includes
 - The Android APIs
 - The core of the SDK
 - Development tools
 - \blacksquare These tools let you compile and debug your app.
 - The Android Virtual Device Manager and Emulator
 - Android Emulator:
 - You can see how your applications will look and behavior on a real Android device
 - All Android applications run within Dalvik VM / ART run time.
 - Documentations
 - Sample code

Kettering University

Introducin

Introducing the Development Framework

■ A complete set of software for mobile devices: an OS, middleware,

■ No different between the phone's core apps and third-party apps.

8

Android Studio: IDE

9

Android Software Stack

Android architecture

Kettering University

Libraries

1

0

- A set of C/C++ libraries used by various components of the Android system.
 - System C library
 - Tuned for embedded Linux-based devices
 - Media Libraries
 - Based on PacketVideo's OpenCORE; the libraries support playback and recording of many popular audio and video formats, as well as static image files
 - Surface Manager
 - Manages access to the display subsystem and seamlessly composites 2D and 3D graphic layers from multiple applications
 - LibWebCore
 - A modern web browser engine which powers both the Android browser and an embeddable web view
 - SGL/ 3D libraries
 - SGL: underlying 2D graphics engine
 - An implementation based on OpenGL ES 1.0 APIs; the libraries use either hardware 3D acceleration (where available) or the included, highly optimized 3D software rasterizer
 - FreeType
 - bitmap and vector font rendering
 - SQLite

Kettering University

A powerful and lightweight relational database engine available to all applications

Android Studio

- ■New IDE from Google
- ■Uses Gradle for bulding the apps and packages.
- There was no dedicated IDE for Android from Google prior to Android Studio
 - Eclipse IDE:
 - Android has a special plug-in for Eclipse IDE (ADT Plugin for Eclipse) for creating Android projects.
 - ADT Plugin tightly integrates Eclipse with the Android Emulator and debugging tools.
 - ADT Bundle
 - Eclipse with the ADT Plugin.

Kettering University

Application Framework

- Android offers developers the ability to build rich and innovative applications.
- Developers have full access to the same framework APIs used by the core applications.
- Underlying all applications is a set of services, including
 - View System
 - can be used to build an application, including lists, grids, text boxes, buttons, and even an embeddable web browser
 - Content Providers
 - enable applications to access data from other applications (such as Contacts), or to share their own data
 - A Resource Manager
 - provides access to non-code resources such as localized strings, graphics, and layout files
 - A Notification Manager
 - \blacksquare enables all applications to display custom alerts in the status bar
 - An Activity Manager
 - manages the lifecycle of applications and provides a common navigation backstack

Android Run-time

- Android includes a set of core libraries that most of the functionality available in the core libraries of the Java programming language.
- Every Android app runs in its own process with its own instance of the Dalvik virtual machine or ART runtime.
- The Dalvik VM executes files in the Dalvik Executable (.dex) format. Dalvik uses a Just-in-Time model (JIT).
- ART, a new runtime. It is compatible with DEX. ART uses Aheadof-Time model (AOT) for improved performance.

Java

Kettering University

- A programming language
 - Syntax is very similar to C++ but different!
- A virtual platform
 - Java virtual machine is a software machine or hypothetical chip.
 - Note: The Dalvik virtual machine in Android is optimized for small footprint machine.
- Bytecodes (cross-platform binary code)
 - .class binary file of bytecodes
- A class libraries
 - APIs for GUI, data storage, I/O, networking, and etc.

Kettering University

1

3

1 5

Java language

- ■No code outside of the class definition.
- Single inheritance only.
- ■Only one top level public class in a file
 - The file name should be same as the public class name.

lava

Java Bytecode & Virtual Machine

1 7

1

Q

- Bytecode (the class file) is an intermediate representation of the program.
- You can consider bytecode as the machine code of the Java Virtual Machine.
- Java interpreter starts up a new virtual machine when it runs a Java bytecode.

Kettering University

Passing Arguments

Primitive type:

- Pass by value:
 - The called method has a copy of the value.
 - The method cannot pass changed value in the argument to the caller.
- Reference type:
 - Pass by reference:
 - The called method has a copy of the <u>reference</u>.
 - The method accesses the same object!

Package and Reference

- Packages and import
 - \blacksquare A package is a bunch of classes and interfaces.
 - Library of classes
 - You can import packages that you need.
 - **Example)** import android.os.Bundle

Reference

- No pointers!
 - Java doesn't have pointer variables.
 - Reference variables are equivalent in concept.
- Objects and Arrays are reference types
 - Primitive types are stored as values

Kettering University

Inheritance

Keyword extends to inherit from a superclass.

Example

package edu.kettering.hellokettering;

import android.os.Bundle;

public class HelloKettering extends AppCompatActivity {
 /** Called when the activity is first created. */
 @Override

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

Developing for Mobile Apps

Kettering University

Designing for Performance

2 3

2

1

Being fast and efficient

- <u>http://developer.android.com/training/articles/perf-tips.html</u>
- \blacksquare Avoid creating short-term temporary objects.
 - Fewer objects created mean less-frequent garbage collection
- Avoid internal getter/setters
 - Excellent habits for C++, but not for Android.
 - Direct field access is about 7x faster than invoking a trivial getter/setter.
- Use static final for constants
- Use enhance for loop syntax

Design Considerations

- Small and portable mobile devices
 - Offer exciting opportunities for software development.
 - But consider limitations
 - Low processor power
 - Limited RAM/permanent storage capacity
 - Small screen size
 - High costs associated with data transfer
 - Slow data transfer rates with high latency
 - Unreliable data connections
 - Battery life!
- Designing for Android
 - Performance
 - Responsiveness
 - Seamlessness

Kettering University

Designing for Responsiveness

Application Not Responding (ANR)

- Activity Manager and Window Manager monitor application responsiveness.
- Android display the ANR dialog when it detects one of following conditions
 - \blacksquare No response to an input event within 5 seconds
 - A BroadcastReceiver hasn't finished executing within 10 seconds

■How to avoid ANR?

- When an Android app runs on a single thread, any lengthy operation (network, database, computationally expensive calculation) could invoke the ANR.
- Consider making a child thread to do the lengthy operation.

2

Designing for Seamlessness

- Your application can cause problems under the multitasking environment when you ignore seamlessness issues.
- Be a good citizen!
- Save instance state
 - Keep in mind that Android is a mobile platform.
 - Another app can pop up anytime over your own app
- Use a thread when you need to do a lot.
 - Avoid the ANR.
- Use multiple screens when necessary.
- Design your UI to work with multiple screen resolutions
- Assume the network is slow
- Don't assume touchscreen or keyboard
- Do conserve the device battery

Kettering University

Creating an Android Project

- Application Name
- App name: appears to users.

Project Name

- Name for your project directory.
- Package Name
- Must be unique across all packages on the Android system.
- \blacksquare For this, use the reverse domain name of your organization.
- Minimum Required SDK
 - The lowest version of Android that your app supports.
- ■Target SDK
- The highest version of Android with which you have tested with your app. Kettering University

The formation of the second se

Directories and Files

AndroidManifest.xml

■ It describes the fundamental characteristics of the app.

src/

■ Your app's main source files.

res/

- Contains several sub dirs.
- drawable-hdpi/
 - Drawable objects (bitmaps) for high-density screen.
- layout/
 - Files that define your app's user interface
- values/

XML files that contains a collection of resources

Kettering University

Building Your First App

Kettering University

ns under the multitasking mlessness issues. 2 6

2 5

< Back Next > Finish Cancel

?

Using a Real Device

3 1

■ Enable USB debugging on your device.

- Settings > Applications > Development for Android 3.2 or older
- Settings > Developer options for Android 4.0 or newer.
 - This menu item is hidden.
 - Settings > About phone and find Build number item. Tap it seven times.

Kettering University

Building a User Interface

Using the Emulator

- Android Virtual Device (AVD) must be created.
 - Window > Android Virtual Device Manager.
 - Device Definitions tab.
 - Choose Nexus 4 by Google.
 - Click Create AVD...

Android Virtual Devices Devic	ce Definitions				
List of existing Android Virtua	Devices locate	d at C:\Use	rs\android\.	android\avd	
AVD Name	Target Name	Platform 4.2	API Level 17	CPU/ABI ARM (armeabi-v7a)	New Edit
VAVD_for_Galaxy_Nexus	Android 4.2				
					Delete
					Repair
					Details
					Start
					Refresh

View and ViewGroup

■View objects are UI widgets such as buttons and text fields.

- ■ViewGroup objects are *invisible* view containers.
 - \blacksquare Define how the child views are laid out. (e.g. grid or vertical list).
- ■Open activity_main.xml from res/layout/

Layout

- Relative/Linear/Absolute/Frame/Table/GridLayout
- We will cover these in a lecture later.
- Also see the more recent construct called Fragments.
 - Modular design enables easier composition of multiple View-like objects for large screens.

Add a Text Field

< EditText
and roid :id= "@ + id/editText1"
and roid :byout_width= "w rap_content"
and roid :byout_height= "w rap_content"
and roid :byout_height= "@ + id/textView 1"
and roid :byout_hebw= "@ + id/textView 1"
and roid :byout_m arginTop= "17dp"
and roid :bem = "10">

- Place the Text Field at below of textView1.
- ■Take a peek in activity_main.xml
 - \blacksquare id: a unique id for the view.
 - The @ sign is required to refer to any resource object from XML
 - The + sign to *define* a resource id. The id will be automatically generated by the SDK tools.
 - layout_width/height: size of the view
 - wrap_content: as big as needed to fit the contents of the view.
 - layout_alighLeft/below: relative layout.
 - layout_marginTop: top margin.
 - em: a unit of width in the filed the typography.

Add a Button

< Button
 and roid:id= "@ + id/button1"
 and roid:ibyout_width= 'w rap_content"
 and roid:ibyout_height= 'w rap_content"
 and roid:ibyout_height= 'w rap_content"
 and roid:ibyout_alignBottom = '@ + id/editText1"
 and roid:ibyout_alignBottom = 'Wue"
 and roid:itext= '@ string/button_send' />

■ Change the Text, "Button" to "Send."

- ■Using a String resource
 - res/values/strings.xml
 - Add "button_send" with "Send" as its value.

Kettering University

3 5

Accessing to a View

Add "android:onClick attribute to the Button and set its attribute "sendMessage"

- ■Open the MainActivity class (src/)
- ■Add this corresponding method.
 - /** Called when the user clicks the Send button */ public void sendMessage(View view) { // Do something in response to button

Respond to the Send Button

}

Kettering University

- This generates an error:
 - Automatic Building!
 - Suggests possible fixes.
 - Select "import View"
 - import android.view.View; is automatically added.

findViewById

- ■A special class R!
 - \blacksquare All resource IDs are defined in your project's R class.
 - \blacksquare The R class is generated by the SDK tool.
- Accessing to a resource:
 - In XML: @*type*/id
 - In code: R.*type.id*
 - Example) a string resource hello (@string/hello) can be accessed by the name **R.string.hello**.
- ■Add this code to the **sendMessage** method.
 - EditText editText1 = (EditText)findViewById(R.id.editText1);
 - TextView textView1 = (TextView)findViewById(R.id.*textView1);*
 - textView1.setText(editText1.getText());

Questions?

3 7

Kettering University