
Lecture 1
Introduction to Android
Jaerock Kwon, with edits by Yoonsuck Choe (October 2015)

Kettering University 1

Today’s Topics

◼Android Introduction

◼Building your first app!

2

Kettering University

Android

3

Kettering University

What is Android?

◼An open source software stack that includes
◼ Operating system

◼ Linux operating system kernel that provides low level interface with
the hardware, memory management, and process control.

◼ Middleware

◼ A run time to execute Android applications including Dalvik virtual
machine (and the more recent ART runtime) and core libraries.

◼ Key mobile applications

◼ Email, SMS, PIM, web browser, and etc.

◼ Along with API libraries for writing mobile applications.

◼ Including open-source libraries such as SQLite, WebKit, and OpenGL
ES.

◼Open-source development platform for creating mobile
applications.

4

Kettering University

Android

◼Complete
◼ A complete set of software for mobile devices: an OS, middleware,

and key mobile apps.

◼Open
◼ It was built to truly open.

◼Equal
◼ All apps are created equal.

◼ No different between the phone’s core apps and third-party apps.

◼ Equal access to a phone’s capabilities.

◼Breaking down app boundaries

◼Fast & easy app development

5

Kettering University

Android SDK Features

◼ No licensing, distributions, or development fees or release approval
processes.

◼ GSM, EDGE, and 3G networks for telephony and data transfer

◼ Full multimedia hardware control

◼ APIs for using sensor hardware including accelerometer and the compass.

◼ APIs for location based services

◼ IPC

◼ Shared data storage

◼ Background applications and processes.

◼ Home screen widgets, Live Folders.

◼ HTML5 WebKit-based web browser

◼ And many more…

6

Kettering University

Introducing the
Development Framework

7

Kettering University

Android SDK

◼The Android SDK includes
◼ The Android APIs

◼ The core of the SDK

◼ Development tools

◼ These tools let you compile and debug your app.

◼ The Android Virtual Device Manager and Emulator

◼ Android Emulator:

◼ You can see how your applications will look and behavior on a real
Android device

◼ All Android applications run within Dalvik VM / ART run time.

◼ Documentations

◼ Sample code

8

Kettering University

Android Studio: IDE

◼Android Studio
◼New IDE from Google
◼Uses Gradle for bulding the apps and packages.

◼There was no dedicated IDE for Android from Google prior to Android
Studio

◼ Eclipse IDE:

◼ Android has a special plug-in for Eclipse IDE (ADT Plugin for Eclipse)
for creating Android projects.

◼ ADT Plugin tightly integrates Eclipse with the Android Emulator and
debugging tools.

◼ ADT Bundle

◼ Eclipse with the ADT Plugin.

9

Kettering University

Android Software Stack 1
0

Kettering University

Android architecture

+ ART runtime

Application Framework

◼ Android offers developers the ability to build rich and innovative
applications.

◼ Developers have full access to the same framework APIs used by the core
applications.

◼ Underlying all applications is a set of services, including
◼ View System

◼ can be used to build an application, including lists, grids, text boxes, buttons, and even
an embeddable web browser

◼ Content Providers
◼ enable applications to access data from other applications (such as Contacts), or to

share their own data
◼ A Resource Manager

◼ provides access to non-code resources such as localized strings, graphics, and layout
files

◼ A Notification Manager
◼ enables all applications to display custom alerts in the status bar

◼ An Activity Manager
◼ manages the lifecycle of applications and provides a common navigation backstack

1
1

Kettering University

Libraries

◼ A set of C/C++ libraries used by various components of the Android system.
◼ System C library

◼ Tuned for embedded Linux-based devices
◼ Media Libraries

◼ Based on PacketVideo's OpenCORE; the libraries support playback and recording of many popular
audio and video formats, as well as static image files

◼ Surface Manager
◼ Manages access to the display subsystem and seamlessly composites 2D and 3D graphic layers from

multiple applications
◼ LibWebCore

◼ A modern web browser engine which powers both the Android browser and an embeddable web view
◼ SGL/ 3D libraries

◼ SGL: underlying 2D graphics engine
◼ An implementation based on OpenGL ES 1.0 APIs; the libraries use either hardware 3D acceleration

(where available) or the included, highly optimized 3D software rasterizer
◼ FreeType

◼ bitmap and vector font rendering
◼ SQLite

◼ A powerful and lightweight relational database engine available to all applications

1
2

Kettering University

Android Run-time

◼Android includes a set of core libraries that most of the
functionality available in the core libraries of the Java
programming language.

◼Every Android app runs in its own process with its own instance
of the Dalvik virtual machine or ART runtime.

◼The Dalvik VM executes files in the Dalvik Executable (.dex)
format. Dalvik uses a Just-in-Time model (JIT).

◼ART, a new runtime. It is compatible with DEX. ART uses Ahead-
of-Time model (AOT) for improved performance.

1
3

Kettering University

Java

Kettering University

1
4

Java

◼A programming language
◼ Syntax is very similar to C++ but different!

◼A virtual platform
◼ Java virtual machine is a software machine or hypothetical chip.

◼ Note: The Dalvik virtual machine in Android is optimized for small
footprint machine.

◼ Bytecodes (cross-platform binary code)

◼ .class binary file of bytecodes

◼A class libraries
◼ APIs for GUI, data storage, I/O, networking, and etc.

1
5

Kettering University

Java language

◼No code outside of the class definition.

◼Single inheritance only.

◼Only one top level public class in a file
◼ The file name should be same as the public class name.

1
6

Kettering University

Java Bytecode &Virtual Machine

◼Bytecode (the class file)is an intermediate representation of the
program.
◼ You can consider bytecode as the machine code of the Java Virtual

Machine.

◼Java interpreter starts up a new virtual machine when it runs a
Java bytecode.

1
7

Kettering University

Package and Reference

◼Packages and import
◼ A package is a bunch of classes and interfaces.

◼ Library of classes

◼ You can import packages that you need.

◼ Example) import android.os.Bundle

◼Reference
◼ No pointers!

◼ Java doesn’t have pointer variables.

◼ Reference variables are equivalent in concept.

◼ Objects and Arrays are reference types

◼ Primitive types are stored as values

1
8

Kettering University

Passing Arguments

◼Primitive type:
◼ Pass by value:

◼ The called method has a copy of the value.

◼ The method cannot pass changed value in the argument to the
caller.

◼Reference type:
◼ Pass by reference:

◼ The called method has a copy of the reference.

◼ The method accesses the same object!

1
9

Kettering University

Inheritance

◼Keyword extends to inherit from a superclass.

◼Example
◼package edu.kettering.hellokettering;

import android.os.Bundle;

public class HelloKettering extends AppCompatActivity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 }
}

2
0

Kettering University

Developing for Mobile Apps

Kettering University

2
1 Design Considerations

◼ Small and portable mobile devices
◼ Offer exciting opportunities for software development.
◼ But consider limitations

◼ Low processor power
◼ Limited RAM/permanent storage capacity
◼ Small screen size
◼ High costs associated with data transfer
◼ Slow data transfer rates with high latency
◼ Unreliable data connections
◼ Battery life!

◼ Designing for Android
◼ Performance
◼ Responsiveness
◼ Seamlessness

2
2

Kettering University

Designing for Performance

◼Being fast and efficient
◼ http://developer.android.com/training/articles/perf-tips.html

◼ Avoid creating short-term temporary objects.

◼ Fewer objects created mean less-frequent garbage collection

◼ Avoid internal getter/setters

◼ Excellent habits for C++, but not for Android.

◼ Direct field access is about 7x faster than invoking a trivial
getter/setter.

◼ Use static final for constants

◼ Use enhance for loop syntax

2
3

Kettering University

Designing for Responsiveness

◼Activity Manager and Window Manager monitor
application responsiveness.

◼Android display the ANR dialog when it detects
one of following conditions
◼ No response to an input event within 5 seconds
◼ A BroadcastReceiver hasn't finished executing

within 10 seconds

◼How to avoid ANR?
◼ When an Android app runs on a single thread, any

lengthy operation (network, database,
computationally expensive calculation) could
invoke the ANR.

◼ Consider making a child thread to do the lengthy
operation.

2
4

Kettering University

Application Not Responding (ANR)

Designing for Seamlessness

◼Your application can cause problems under the multitasking
environment when you ignore seamlessness issues.

◼Be a good citizen!
◼ Save instance state

◼ Keep in mind that Android is a mobile platform.
◼ Another app can pop up anytime over your own app

◼ Use a thread when you need to do a lot.
◼ Avoid the ANR.

◼ Use multiple screens when necessary.
◼ Design your UI to work with multiple screen resolutions
◼ Assume the network is slow
◼ Don't assume touchscreen or keyboard
◼ Do conserve the device battery

2
5

Kettering University

Building Your First App

Kettering University

2
6

Creating an Android Project

◼Application Name
◼ App name: appears to users.

◼Project Name
◼ Name for your project directory.

◼Package Name
◼ Must be unique across all packages on the Android system.

◼ For this, use the reverse domain name of your organization.

◼Minimum Required SDK
◼ The lowest version of Android that your app supports.

◼Target SDK
◼ The highest version of Android with which you have tested with your

app.

2
7

Kettering University

Directories and Files

◼AndroidManifest.xml
◼ It describes the fundamental characteristics of the app.

◼src/
◼ Your app’s main source files.

◼res/
◼ Contains several sub dirs.

◼ drawable-hdpi/

◼ Drawable objects (bitmaps) for high-density screen.

◼ layout/

◼ Files that define your app’s user interface

◼ values/

◼ XML files that contains a collection of resources

2
8

Kettering University

Using a Real Device

◼Enable USB debugging on your device.
◼ Settings > Applications > Development for Android 3.2 or older

◼ Settings > Developer options for Android 4.0 or newer.

◼ This menu item is hidden.

◼ Settings > About phone and find Build number item. Tap it
seven times.

2
9

Kettering University

Using the Emulator

◼Android Virtual Device (AVD) must be created.
◼ Window > Android Virtual Device Manager.

◼ Device Definitions tab.

◼ Choose Nexus 4 by Google.

◼ Click Create AVD…

3
0

Kettering University

Building a User Interface

Kettering University

3
1 View and ViewGroup

◼View objects are UI widgets such as buttons and text fields.

◼ViewGroup objects are invisible view containers.
◼ Define how the child views are laid out. (e.g. grid or vertical list).

◼Open activity_main.xml from res/layout/

◼Layout
◼ Relative/Linear/Absolute/Frame/Table/GridLayout

◼ We will cover these in a lecture later.

◼ Also see the more recent construct called Fragments.

◼ Modular design enables easier composition of multiple View-like
objects for large screens.

3
2

Kettering University

Add a Text Field

◼Place the Text Field at below of textView1.

◼Take a peek in activity_main.xml
◼ id: a unique id for the view.

◼ The @ sign is required to refer to any resource object from XML

◼ The + sign to define a resource id. The id will be automatically
generated by the SDK tools.

◼ layout_width/height: size of the view

◼ wrap_content: as big as needed to fit the contents of the view.

◼ layout_alighLeft/below: relative layout.

◼ layout_marginTop: top margin.

◼ em: a unit of width in the filed the typography.

3
3

Kettering University

 < EditText
 android:id= "@ + id/editText1"
 android:layout_w idth= "w rap_content"
 android:layout_height= "w rap_content"
 android:layout_alignLeft= "@ + id/textView 1"
 android:layout_below = "@ + id/textView 1"
 android:layout_m arginTop= "17dp"
 android:em s= "10" >

Add a Button

◼Change the Text, “Button” to “Send.”

◼Using a String resource
◼ res/values/strings.xml

◼ Add “button_send” with “Send” as its value.

3
4

Kettering University

< Button
 android:id= "@ + id/button1"
 android:layout_w idth= "w rap_content"
 android:layout_height= "w rap_content"
 android:layout_alignBottom = "@ + id/editText1"
 android:layout_alignParentRight= "true"
 android:text= "@ string/button_send" />

Respond to the Send Button

◼Add “android:onClick attribute to the Button and set its attribute
“sendMessage”

◼Open the MainActivity class (src/)

◼Add this corresponding method.
◼ /** Called when the user clicks the Send button */

public void sendMessage(View view) {
 // Do something in response to button
}

◼ This generates an error:

◼ Automatic Building!

◼ Suggests possible fixes.

◼ Select “import View”

◼ import android.view.View; is automatically added.

3
5

Kettering University

Accessing to a View

◼A special class R!
◼ All resource IDs are defined in your project’s R class.

◼ The R class is generated by the SDK tool.

◼Accessing to a resource:
◼ In XML: @type/id
◼ In code: R.type.id

◼ Example) a string resource hello (@string/hello) can be accessed by
the name R.string.hello.

◼Add this code to the sendMessage method.
◼ EditText editText1 = (EditText)findViewById(R.id.editText1);
◼ TextView textView1 = (TextView)findViewById(R.id.textView1);
◼ textView1.setText(editText1.getText());

3
6

Kettering University

findViewById

Questions?

3
7

Kettering University

