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Long-Term Goal of the BNL

C57BL/6 mouse Mouse brain Brain circuits (Mouse cortex)

http://mouseatlas.org http://nervenet.org

• Image and reconstruct the mouse connectome at a

sub-micrometer resolution.

– connectome = full connection matrix of the brain.

• Understand brain function: Structure→ function.
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Background: Connectomics

Imaging: Diffusion Tensor Imaging Light Microscopy Electron Microscopy

Scale: ∼ 10 cm cube ∼ 1 cm cube ∼ 100 µm cube

Human brain Mouse brain Several neurons

Resolution: ∼ 1 mm cube ∼ 1 µm cube ∼ 10 nm cube

Time: hours weeks year

Hagmann et al. (2007) Mayerich et al. (2008) Denk and Horstmann (2004)

• Study of the connectome, the full connection matrix

of the brain (Sporns et al. 2005).
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Motivation and Research Issues

Vasculature Vasculature Neurons Neurons

Whole brain: 1 cm cube ∼50 µm cube Whole brain: 1 cm cube ∼200 µm cube

• Very large 3D volumes of biological data (TBs).

• Very high resolution.

• Details are too fine to be visible at the scale of the

whole volume.

→ Innovative visualization methods are needed
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Overview

1. Instrument: Knife-Edge Scanning Microscope

2. Data: Mouse brain data

3. Visualization

6

Part I

The Instrument: Knife-Edge

Scanning Microscope

Mayerich et al. (2008); McCormick (2004)
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The Instrument:

Knife-Edge Scanning Microscope

• Physical sectioning, as opposed to optical sectioning.

• Light microscopy, bright-field imaging (fluorescence in the works).

• Stains: Golgi (neuron morphology), Nissl (soma), India ink (vasculature).

(Fluorescence imaging in the works.)

• 0.6 µm × 0.7 µm × 1 µm voxel resolution.

• Custom software for control, image capture (Kwon et al. 2008).
8



Operational Principles of the KESM

• Image while cutting (line-scan at the tip of the knife).

• Back-illumination through the diamond knife.

• Tissue thickness: 1 µm (or possibly less).

9

KESM Imaging

Line−scan Camera

Microscope objective Diamond knife

Light source

Specimen

Brain specimen is embedded in plastic block.
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KESM Imaging

Line−scan Camera

Microscope objective Diamond knife

Light source

Specimen

Plastic block is moved toward the knife.
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KESM Imaging

Line−scan Camera

Microscope objective Diamond knife

Light source

Specimen

Thin tissue slides over knife and gets imaged.
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KESM Imaging

Line−scan Camera

Microscope objective Diamond knife

Light source

Specimen

Successive line scan constructs a long image.
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KESM Imaging

Line−scan Camera

Microscope objective Diamond knife

Light source

Specimen

One sweep results in a ∼ 4, 000 × 12, 000 image (∼ 48 MB).
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KESM Imaging

Line−scan Camera

Microscope objective Diamond knife

Light source

Specimen

One brain results in ∼ 25, 000 to 40, 000 images.
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KESM [Movies]

Macro view Close-up Observation port

• Movies showing the KESM in action.
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Related 3D Microscopy

Physical sectioning:

• Array Tomography (Micheva and Smith 2007)

• ATLUM (Hayworth 2008)

• SBF-SEM (Denk and Horstmann 2004)

Hybrid: Ablation + confocal

• All-Optical Histology (Tsai et al. 2003)
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Part II

The Data

Abbott (2008); Choe et al. (2009, 2010)
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KESM Data

300 µm × 350 µm × 120 µm block

• Basically a huge 3D stack made up of 2D images.

• Details such as dendritic spines can be observed.
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KESM Data [Movies]

Cerebellum (Golgi) Cortex (Golgi) Spinal cord (India ink)

• Flythrough of 3D stack: Looks like a movie in 2D.
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KESM: Volume Vis. [Movies]

Nissl (Cortex) Golgi (Cortex) Golgi (Cerebellum)

India ink (Spinal cord) Golgi (Pyramidal cell) Golgi (Purkinje cell)
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KESM: Whole Brain [Movies]

Close-up Sagittal Coronal

• Vascular network in the mouse brain stained with

India ink.

• Whole brain at 0.6 µm× 0.7 µm× 1.0 µm

resolution.
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Part III

Visualization

Eng and Choe (2008); Choe et al. (2011)
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Issues in Visualization

Neurons Neurons

Whole brain: 1 cm cube ∼200 µm cube

• Very large volume (∼ 24,000× 12,000× 5,500≈ 2 TB)

• Fine detail (typical fibers∼ 1 to 2 µm diameter).

• We want a global perspective, but preserve fine detail.
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Two Approaches

1. Thin slab fly-through:

• View the whole volume, but only show a thin slab.

• Interactively move around the slab perpendicular to one

sectioning plane.

• More of a visualization know-how than an algorithm.

2. Web-based rendering using image overlays:

• Google Map-like interface (multi-scale tiling).

• Transparent image overlays for 3D.

• Pseudo-stereo by offsetted overlays.
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Part III.1

Visualization

Thin-Slab Visualization
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Getting Oriented: Golgi Brain

• Partial view of the whole-brain Golgi data set

(horizontal section, seen from above).

• Data block width = 2.88 mm. Horizontal section.

• All movies made with MeVisLab.
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Whole Block Reveals Little

Whole Block 100 µm-thick slab Single layer

• Looking at entire block is not informative.

• Nor is looking at a single layer.
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Thin-Slab Visualization [1/2]

• Flying through∼100 µm-thick slabs reveals intricate

detail.
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Thin-Slab Visualization [2/2]

Sagittal Horizontal

• Thin-slab visualization of new full-brain Golgi data.
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Part III.2

Visualization

Web-Based Rendering Using Image

Overlays
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Visualizing an Image Stack

• Again, single images convey little information.

• Looking at the images as a movie does not help either.

• Looking at the whole set at once does not either.

• Try that for a 2 TB image stack!
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Goals and Requirements

• Goal 1: Visualization in 3D

• Goal 2: Broad dissemination:

– No high-end hardware.

– No custom application.

– Platform independence.

– Runs in a standard web browser without plugins.
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Approach: Overlay w/ Dist. Attenuation

Off the coast of Dubrovnik, Croatia MIP Distance Attenuation

(The inspiration)

How to visualize an image stack? (Eng and Choe 2008)

• We can overlay the images in HTML, using CSS.

• Simple overlay (MIP) is not good.

• We need distance attenuation (haze effect).
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Approach: Pseudo-3D Rendering

• •

Offsetted
Image Stacks

Eye 1 Eye 2 Eye 1 Eye 2

Image Stack

• •

• Generate stereo pair by shearing the image stack.

• Cross merge the above pair.
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Approach: Pseudo-3D Rendering

• •

Offsetted
Image Stacks

Eye 1 Eye 2 Eye 1 Eye 2

Image Stack

• •

• Generate stereo pair by shearing the image stack.

• Parallel merge the above pair.
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Putting It Together: KESM Brain Atlas

• Multi-scale tiles.

• Semi-transparent images.

• Google Maps API (v2).

→ KESM Brain Atlas
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Putting It Together: KESM Brain Atlas

API layers Tiling Scheme

• Multi-scale tiles.

• Semi-transparent images.

• Google Maps API (v2).

→ KESM Brain Atlas 38

KESMBA: Live Demo

• http://kesm.cs.tamu.edu.

• Email choe@tamu.edu for username/password.
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KESMBA: Live Demo
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KESMBA: Live Demo
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KESMBA: Live Demo
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KESMBA: Live Demo
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Stereo Pseudo-3D Rendering

Cross viewing.
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Stereo Pseudo-3D Rendering

Parallel viewing.
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Stereo Pseudo-3D Rendering

Cross viewing.

46

Stereo Pseudo-3D Rendering

Parallel viewing.
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Wrap Up
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Conclusion

• High-throughput physical sectioning microscopes are

enabling the acquisition of detailed neural circuitry data at

the whole brain scale.

• New visual exploration techniques are needed.

• Web-based light-weight database interface allows quick,

intuitive exploration of the data.
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