[Advertised] Stereo Pseudo-3D Rendering for Web-based Display of Scientific Volumetric Data

IAMCS Workshop: Visualization in Biomedical Computation

February 24, 2011

Yoonsuck Choe

Brain Networks Laboratory Department of Computer Science and Engineering Texas A&M University

Joint work with: L. C. Abbott, J. Keyser, B. McCormick, D. Han, J. Kwon, D. Mayerich, D, E. Miller, J. R. Chung, C. Sung.

[Actual] New Visualization Challenges for High-Volume, High-Resolution Brain Connectomics

Data

IAMCS Workshop: Visualization in Biomedical Computation February 24, 2011

Yoonsuck Choe

Brain Networks Laboratory Department of Computer Science and Engineering Texas A&M University

Joint work with: L. C. Abbott, J. Keyser, B. McCormick, D. Han, J. Kwon, D. Mayerich, D, E. Miller, J. R. Chung, C. Sung. 2

Long-Term Goal of the BNL

C57BL/6 mouse http://mouseatlas.org

Brain circuits (Mouse cortex)

• Image and reconstruct the **mouse connectome** at a sub-micrometer resolution.

Mouse brain

http://nervenet.org

- **connectome** = full connection matrix of the brain.
- Understand brain function: Structure \rightarrow function.

Background: Connectomics

Imaging: Diffusion Tensor Imaging Scale: ∼ 10 cm cube Human brain Resolution: ∼ 1 mm cube Time: hours Hagmann et al. (2007)

g Light Microscopy \sim 1 cm cube Mouse brain \sim 1 μ m cube weeks Mayerich et al. (2008)

Electron Microscopy \sim 100 µm cube Several neurons \sim 10 nm cube year Denk and Horstmann (2004)

• Study of the connectome, the full connection matrix of the brain (Sporns et al. 2005).

Motivation and Research Issues

Whole brain: 1 cm cube

- Very large 3D volumes of biological data (TBs).
- Very high resolution.
- Details are too fine to be visible at the scale of the whole volume.
 - \rightarrow Innovative visualization methods are needed

5

Overview

- 1. Instrument: Knife-Edge Scanning Microscope
- 2. Data: Mouse brain data
- 3. Visualization

The Instrument:

6

Knife-Edge Scanning Microscope

- Physical sectioning, as opposed to optical sectioning.
- Light microscopy, bright-field imaging (fluorescence in the works).
- Stains: Golgi (neuron morphology), Nissl (soma), India ink (vasculature). (Fluorescence imaging in the works.)
- 0.6 μ m \times 0.7 μ m \times 1 μ m voxel resolution.
- Custom software for control, image capture (Kwon et al. 2008).

Part I

The Instrument: Knife-Edge

Scanning Microscope

Mayerich et al. (2008); McCormick (2004)

Operational Principles of the KESM

- Image while cutting (line-scan at the tip of the knife).
- Back-illumination through the diamond knife.
- Tissue thickness: 1 μ m (or possibly less).

Brain specimen is embedded in plastic block.

10

KESM Imaging

9

Plastic block is moved toward the knife.

KESM Imaging

Thin tissue slides over knife and gets imaged.

KESM Imaging

Successive line scan constructs a long image.

13

One sweep results in a $\sim 4,000 \times 12,000$ image (\sim 48 MB).

14

KESM Imaging

KESM [Movies]

Macro view

Close-up

Observation port

• Movies showing the KESM in action.

One brain results in $\sim 25,000$ to 40,000 images.

Related 3D Microscopy

Physical sectioning:

- Array Tomography (Micheva and Smith 2007)
- ATLUM (Hayworth 2008)
- SBF-SEM (Denk and Horstmann 2004)

Hybrid: Ablation + confocal

• All-Optical Histology (Tsai et al. 2003)

Part II The Data

Abbott (2008); Choe et al. (2009, 2010)

18

17

KESM Data Image: State St

300 μm \times 350 μm \times 120 μm block

- Basically a huge 3D stack made up of 2D images.
- Details such as dendritic spines can be observed.

KESM Data [Movies]

Cerebellum (Golgi)

acquisitior

Cortex (Golgi)

Spinal cord (India ink)

• Flythrough of 3D stack: Looks like a movie in 2D.

KESM: Volume Vis. [Movies]

Nissl (Cortex)

Golgi (Cortex)

Golgi (Cerebellum)

India ink (Spinal cord)

Golgi (Pyramidal cell) 21

Golgi (Purkinje cell)

KESM: Whole Brain [Movies]

Close-up

Coronal

- Vascular network in the mouse brain stained with India ink.
- Whole brain at 0.6 μ m imes 0.7 μ m imes 1.0 μ m resolution.

22

Issues in Visualization

- Very large volume (\sim 24,000 imes 12,000 imes 5,500 pprox 2 TB)
- Fine detail (typical fibers \sim 1 to 2 μ m diameter).

Whole brain: 1 cm cube

• We want a global perspective, but preserve fine detail.

Part III **Visualization**

Eng and Choe (2008); Choe et al. (2011)

Two Approaches

- 1. Thin slab fly-through:
 - View the whole volume, but only show a thin slab.
 - Interactively move around the slab perpendicular to one sectioning plane.
 - More of a visualization know-how than an algorithm.
- 2. Web-based rendering using image overlays:
 - Google Map-like interface (multi-scale tiling).
 - Transparent image overlays for 3D.
 - Pseudo-stereo by offsetted overlays.

25

Getting Oriented: Golgi Brain

- Partial view of the whole-brain Golgi data set (horizontal section, seen from above).
- Data block width = 2.88 mm. Horizontal section.

Part III.1 Visualization

Thin-Slab Visualization

26

Whole Block Reveals Little

Whole Block

100 μ m-thick slab

Single layer

- Looking at entire block is not informative.
- Nor is looking at a single layer.

Thin-Slab Visualization [1/2]

• Flying through ${\sim}100~\mu\text{m}$ thick slabs reveals intricate detail.

Thin-Slab Visualization [2/2]

• Thin-slab visualization of new full-brain Golgi data.

30

Visualizing an Image Stack

- Again, single images convey little information.
- Looking at the images as a movie does not help either.
- Looking at the whole set at once does not either.
- Try that for a 2 TB image stack!

29

Part III.2

Visualization

Web-Based Rendering Using Image Overlays

Goals and Requirements

- Goal 1: Visualization in 3D
- Goal 2: Broad dissemination:
 - No high-end hardware.
 - No custom application.
 - Platform independence.
 - Runs in a standard web browser without plugins.

Approach: Overlay w/ Dist. Attenuation

How to visualize an image stack? (Eng and Choe 2008)

- We can overlay the images in HTML, using CSS.
- Simple overlay (MIP) is not good.

(The inspiration)

• We need distance attenuation (haze effect).

34

33

Approach: Pseudo-3D Rendering

- Generate stereo pair by shearing the image stack.
- Cross merge the above pair.

Approach: Pseudo-3D Rendering

- Generate stereo pair by shearing the image stack.
- Parallel merge the above pair.

Putting It Together: KESM Brain Atlas

- Multi-scale tiles.
- Semi-transparent images.
- Google Maps API (v2).
 - \rightarrow KESM Brain Atlas

37

KESMBA: Live Demo

- http://kesm.cs.tamu.edu.
- Email choe@tamu.edu for username/password.

Putting It Together: KESM Brain Atlas

- Multi-scale tiles.
- Semi-transparent images.
- Google Maps API (v2).
 - ightarrow KESM Brain Atlas ightarrow 38

KESMBA: Live Demo

KESMBA: Live Demo

41

KESMBA: Live Demo

KESMBA: Live Demo

42

Stereo Pseudo-3D Rendering

Stereo Pseudo-3D Rendering

Stereo Pseudo-3D Rendering

Stereo Pseudo-3D Rendering

Wrap Up

Conclusion

- High-throughput physical sectioning microscopes are enabling the acquisition of detailed neural circuitry data at the whole brain scale.
- New visual exploration techniques are needed.
- Web-based light-weight database interface allows quick, intuitive exploration of the data.

Acknowledgments

- People:
 - BNL: John Keyser, Louise C. Abbott, Bruce McCormick
 - KESM: Bruce McCormick, David Mayerich, Jaerock Kwon, Daniel Miller, Bernard Mesa (Micro Star)
 - KESM Brain Atlas: Chul Sung, Ji Ryang Chung, Daniel Eng
- Funding:
 - IAMCS/KAUST (2010–2011); NSF CRCNS Data Sharing (#0905041); ● NIH/NINDS (#1R01-NS54252 & 03S1); ● NSF MRI (#0079874) and NSF ITR (#CCR-0220047), ● Texas Higher Education Coordinating Board (ATP #000512-0146-2001), ● TAMU CSE ● TAMU VPR ● 3Scan.

50

References

- Abbott, L. C. (2008). High-throughput imaging of whole small animal brains with the knife-edge scanning microscope. In Neuroscience Meeting Planner, Washington, DC: Society for Neuroscience. Program No. 504.2.
- Choe, Y., Abbott, L. C., Han, D., Huang, P.-S., Keyser, J., Kwon, J., Mayerich, D., Melek, Z., and McCormick, B. H. (2008). Knife-edge scanning microscopy: High-throughput imaging and analysis of massive volumes of biological microstructures. In Rao, A. R., and Cecchi, G., editors, *High-Throughput Image Reconstruction and Analysis:* Intelligent Microscopy Applications, 11–37. Boston, MA: Artech House.
- Choe, Y., Abbott, L. C., Miller, D. E., Han, D., Yang, H.-F., Chung, J. R., Sung, C., Mayerich, D., Kwon, J., Micheva, K., and Smith, S. J. (2010). Multiscale imaging, analysis, and integration of mouse brain networks. In *Neuroscience Meeting Planner, San Diego, CA: Society for Neuroscience*. Program No. 516.3. Online.
- Choe, Y., Han, D., Huang, P.-S., Keyser, J., Kwon, J., Mayerich, D., and Abbott, L. C. (2009). Complete submicrometer scans of mouse brain microstructure: Neurons and vasculatures. In *Neuroscience Meeting Planner, Chicago, IL: Society for Neuroscience*. Program No. 389.10. Online.
- Choe, Y., Mayerich, D., Kwon, J., Miller, D. E., Chung, J. R., Sung, C., Keyser, J., and Abbott, L. C. (2011). Knife-edge scanning microscopy for connectomics research. In *Proceedings of the International Joint Conference on Neural Networks*. Piscataway, NJ: IEEE Press. Submitted.
- Denk, W., and Horstmann, H. (2004). Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. *PLoS Biology*, 19:e329.

49

In Memory of Bruce H. McCormick

Bruce H. McCormick (1928-2007)

- Designer of the Knife-Edge Scanning Microscope
- Co-Founder of Scientific Visualization (with Tom DeFanti and Maxine D. Brown) 51

- Eng, D. C.-Y., and Choe, Y. (2008). Stereo pseudo 3D rendering for web-based display of scientific volumetric data. In Proceedings of the IEEE/EG International Symposium on Volume Graphics.
- Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen, V. J., Meuli, R., and Thiran, J.-P. (2007). Mapping human whole-brain structural networks with diffusion MRI. *PLoS ONE*, 2:e597.
- Hayworth, K. (2008). Automated creation and SEM imaging of Ultrathin Section Libraries: Tools for large volume neural circuit reconstruction. In *Society for Neuroscience Abstracts*. Washington, DC: Society for Neuroscience. Program No. 504.4.
- Kwon, J., Mayerich, D., Choe, Y., and McCormick, B. H. (2008). Lateral sectioning for knife-edge scanning microscopy. In Proceedings of the IEEE International Symposium on Biomedical Imaging, 1371–1374.
- Mayerich, D., Abbott, L. C., and McCormick, B. H. (2008). Knife-edge scanning microscopy for imaging and reconstruction of three-dimensional anatomical structures of the mouse brain. *Journal of Microscopy*, 231:134–143.
- McCormick, B. H. (2004). System and method for imaging an object. USPTO patent #US 6,744,572 (for Knife-Edge Scanning; 13 claims).
- McCormick, B. H., Abbott, L. C., Mayerich, D. M., Keyser, J., Kwon, J., Melek, Z., and Choe, Y. (2006). Full-scale submicron neuroanatomy of the mouse brain. In *Society for Neuroscience Abstracts*. Washington, DC: Society for Neuroscience. Program No. 694.5. Online.
- Micheva, K., and Smith, S. J. (2007). Array tomography: A new tool for imaging the molecular architecture and ultrastructure of neural circuits. *Neuron*, 55:25–36.

- Sporns, O., Tononi, G., and Kötter, R. (2005). The human connectome: A structural description of the human brain. *PLoS Computational Biology*, 1:e42.
- Tsai, P. S., Friedman, B., Ifarraguerri, A. I., Thompson, B. D., Lev-Ram, V., Schaffer, C. B., Xiong, Q., Tsien, R. Y., Squier, J. A., and Kleinfeld, D. (2003). All-optical histology using ultrashort laser pulses. *Neuron*, 39:27–41.