
Code Tuning Techniques

CPSC 315 – Programming Studio
adapted from John Keyser's 315 slides

Most examples from
Code Complete 2

Tuning Code

 Tuning can be at several “levels” of code
− Routine level to system level

 No “do this and improve code” technique
− Same technique can increase or decrease

performance, depending on situation
− Must measure to see what effect is

 Remember:

Tuning code can make it harder to
understand and maintain!

Tuning Code

 We’ll describe several categories of
tuning, and several specific cases

− Logical Approaches
− Tuning Loops
− Transforming Data
− Tuning Expressions
− Others

Logical Approaches:
Stop Testing Once You Know the

Answer
 Short-Circuit Evaluation

if ((a > 1) and (a < 4))

if (a > 1)

 if (a < 4)
− Note: Some languages (C++/Java) do this

automatically

Logical Approaches:
Stop Testing Once You Know the Answer

 Breaking out of “Test Loops”
flag = False;
for (i=0; i<10000; i++) {
 if (a[i] < 0) flag = True;
}
 Several options:

− Use a break command (or goto!)
− Change condition to check for Flag
− Sentinel approach

Logical Approaches:
Stop Testing Once You Know the

Answer
 Break Command
flag = False;
for (i=0; i<10000; i++) {
 if (a[i] < 0) {
 flag = True;
 break();
 }
}

Logical Approaches:
Stop Testing Once You Know the

Answer
 Change Condition to Check for Flag
flag = False;
for (i=0; (i<10000) && !flag; i++) {
 if (a[i] < 0) {
 flag = True;
 }
}

Logical Approaches:
Stop Testing Once You Know the

Answer
 Sentinel Approach
flag = False;
for (i=0; i<10000; i++) {
 if (a[i] < 0) {
 flag = True;
 i=10000;
 }
}

Logical Approaches:
Order Tests by Frequency

 Test the most common case first
− Especially in switch/case statements
− Remember, compiler may reorder, or not short-

circuit
 Note: it’s worthwhile to compare performance

of logical structures
− Sometimes switch is faster, sometimes if-then

 Generally a useful approach, but can
potentially make tougher-to-read code

− Organization for performance, not understanding

Logical Approaches:
Use Lookup Tables

 Table lookups can be much faster than
following a logical computation

 Example: diagram of logical values:

1 1 BA

1

C

2

2

3

2

0

Logical Approaches:
Use Lookup Tables

if ((a && !c) || (a && b && c)) {

 val = 1;

} else if ((b && !a) || (a && c && !b)) {

 val = 2;

} else if (c && !a && !b) {

 val = 3;

} else {

 val = 0;

}

1 1 BA

1

C

2

2

3

2

0

Logical Approaches:
Use Lookup Tables

static int valtable[2][2][2] = {

 // !b!c !bc b!c bc

 0, 3, 2, 2, // !a

 1, 2, 1, 1, // a

};

val = valtable[a][b][c] 1 1 BA

1

C

2

2

3

2

0

Logical Approaches:
Lazy Evaluation

 Idea: wait to compute until you’re sure
you need the value

− Often, you never actually use the value!
 Tradeoff overhead to maintain lazy

representations vs. time saved on
computing unnecessary stuff

Logical Approaches:
Lazy Evaluation

Class listofnumbers {

private int howmany;

private float* list;

private float median;

float getMedian() {

return median;

}

void addNumber(float num) {

//Add number to list

//Compute Median

}

Logical Approaches:
Lazy Evaluation

Class listofnumbers {

private int howmany;

private float* list;

private float median;

float getMedian() {

//Compute Median

return median;

}

void addNumber(float num) {

//Add number to list

}

Tuning Loops:
Unswitching

 Remove an if statement unrelated to index from inside loop to
outside

for (i=0; i<n; i++)
 if (type == 1)
 sum1 += a[i];
 else
 sum2 += a[i];

if (type == 1)
 for (i=0; i<n; i++)
 sum1 += a[i];
else
 for (i=0; i<n; i++)
 sum2 += a[i];

Tuning Loops:
Jamming

 Combine two loops
for (i=0; i<n; i++)

 sum[i] = 0.0;
 for (i=0; i<n; i++)
 rate[i] = 0.03;

 for (i=0; i<n; i++) {
 sum [i] = 0.0;
 rate[i] = 0.03;
 }

Tuning Loops:
Unrolling

 Do more work inside loop for fewer iterations
− Complete unroll: no more loop…
− Occasionally done by compilers (if recognizable)

for (i=0; i<n; i++) {
 a[i] = i;
}

for (i=0; i<(n-1); i+=2) {
 a[i] = i;
 a[i+1] = i+1;
}
if (i == n-1)
 a[n-1] = n-1;

Tuning Loops:
Minimizing Interior Work

 Move pointer/memory references and repeated
computation outside

for (i=0; i<n; i++) {
 balance[i] += purchase->allocator->indiv-

>borrower;
 amounttopay[i] = balance[i]*(prime+card)*pcentpay;
}

newamt = purchase->allocator->indiv->borrower;
payrate = (prime+card)*pcentpay;
for (i=0; i<n; i++) {
 balance[i] += newamt;
 amounttopay[i] = balance[i]*payrate;
}

Tuning Loops:
Sentinel Values

 Test value placed after the end of the array to guarantee
termination

i=0;
found = FALSE;
while ((!found) && (i<n)) {
 if (a[i] == testval)
 found = TRUE;
 else
 i++;
}
if (found) … //Value found

savevalue = a[n];
a[n] = testval;
i=0;
while (a[i] != testval)
 i++;
if (i<n) … // Value found (loop terminated before reaching end)

Tuning Loops:
Busiest Loop on Inside

 Reduce overhead by calling fewer loops
for (i=0; i<100; i++) // 100
 for (j=0; j<10; j++) // 100x10=1000
 dosomething(i,j);
Total of 1100 loop iterations

for (j=0; j<10; j++) // 10
 for (i=0; i<100; i++) // 10x100=1000
 dosomething(i,j);
Total of 1010 loop iterations

Tuning Loops:
Strength Reduction

 Replace multiplication involving loop
index by addition

for (i=0; i<n; i++)

 a[i] = i*conversion;

sum = 0; // or: a[0] = 0;

for (i=0; i<n; i++) { // or: for (i=1; i<n; i++)

 a[i] = sum; // or: a[i] =

 sum += conversion; // a[i-1]+conversion;

}

Transforming Data:
Integers Instead of Floats

 Integer math tends to be faster than
floating point

 Use ints instead of floats where
appropriate

 Likewise, use floats instead of doubles
 Need to test on system…

Transforming Data:
Fewer Array Dimensions

 Express as 1D arrays instead of 2D/3D as
appropriate

− Beware of assumptions on memory organization

for (i=0; i<rows; i++)
 for (j=0; j<cols; j++)
 a[i][j] = 0.0;

for (i=0; i<rows*cols; i++)
 a[i] = 0.0;

Transforming Data:
Minimize Array Refs

 Avoid repeated array references
− Like minimizing interior work

for (i=0; i<r; i++)
 for (j=0; j<c; j++)
 a[j] = b[j] + c[i];

for (i=0; i<r; i++) {
 temp = c[i];
 for (j=0; j<c; j++)
 a[j] = b[j] + temp;
}

Transforming Data:
Use Supplementary Indexes

 Sort indices in array rather than
elements themselves

− Tradeoff extra dereference in place of
copies

Transforming Data:
Use Caching

 Store data instead of (re-)computing
− e.g. store length of an array (ended by

sentinel) once computed
− e.g. repeated computation in loop

 Overhead in storing data is offset by
− More accesses to same computation
− Expense of initial computation

Tuning Expressions:
Algebraic Identities and Strength

Reduction
 Avoid excessive computation

− sqrt(x) < sqrt(y) equivalent to x < y
 Combine logical expressions

− !a || !b equivalent to !(a && b) -- 3 vs. 2 ops
 Use trigonometric/other identities
 Right/Left shift to multiply/divide by 2
 e.g. Efficient polynomial evaluation

− A*x*x*x + B*x*x + C*x + D =
 (((A*x)+B)*x)+C)*x+D

Tuning Expressions:
Compile-Time Initialization

 Known constant passed to function can
be replaced by value.

log2val = log(val) / log(2);

const double LOG2 =
0.69314718;

log2val = log(val) / LOG2;

Tuning Expressions:
Avoid System Calls

 Avoid calls that provide more
computation than needed

− e.g. if you need an integer log, don’t
compute floating point logarithm

 Could count # of shifts needed
 Could program an if-then statement to identify

the log (only a few cases)

Tuning Expressions:
Use Correct Types

 Avoid unnecessary type conversions
 Use floating-point constants for floats,

integer constants for ints

Tuning Expressions:
Precompute Results

 Storing data in tables/constants instead
of computing at run-time

 Even large precomputation can be
tolerated for good run-time

 Examples
− Store table in file
− Constants in code
− Caching
− Function look-up tables

Tuning Expressions:
Eliminate Common Subexpressions

 Anything repeated several times can be
computed once (“factored” out) instead

− Compilers pretty good at recognizing, now

a = b + (c/d) - e*(c/d) +
f*(d/c);

t = c/d;
a = b + t - e*t + f/t;

Other Tuning:
Inlining Routines

 Avoiding function call overhead by
putting function code in place of
function call

− Also called Macros
 Some languages support directly

(C++: inline)
 Compilers tend to minimize overhead

already, anyway

Other Tuning:
Recoding in Low-Level Language

 Rewrite sections of code in lower-level (and
probably much more efficient) language

 Lower-level language depends on starting
level

− Python -> C++
− C++ -> assembler

 Should only be done at bottlenecks
 Increase can vary greatly, can easily be

worse

Other Tuning:
Buffer I/O

 Buffer input and output
− Allows more data to be processed at once
− Usually there is overhead in sending

output, getting input

Other Tuning:
Handle Special Cases Separately
 After writing general purpose code,

identify hot spots
− Write special-case code to handle those

cases more efficiently
 Avoid overly complicated code to

handle all cases
− Classify into cases/groups, and separate

code for each

Other Tuning:
Use Approximate Values

 Sometimes can get away with
approximate values

 Use simpler computation if it is “close
enough”

− e.g. integer sin/cos, truncate small values
to 0.

Other Tuning:
Recompute to Save Space

 Opposite of Caching!
 If memory access is an issue, try not to

store extra data
 Recompute values to avoid additional

memory accesses, even if already
stored somewhere

Code Tuning Summary

 Tuning is a “last” step, and should only be
applied when it is needed

 Always test your changes
− Often will not improve or even make worse
− If there is no improvement, go back to earlier

version
 Usually, code readability is more important

than performance benefit gained by tuning

