Performance and Code
Tuning Overview

CPSC 315 — Programming Studio

adapted from John Keyser's 315 slides

Performance Increases
without Code Tuning

Lower your Standards/Requirements

Asking for more than is needed leads to
trouble

Example: Return in 1 second
Always?
On Average?
99% of the time?

Is Performance
Important?

Performance tends to improve with time
Hardware Improves (SW tweak might not last?)

Other things can be more important
Accuracy

Robustness
Code Readability

Worrying about it can cause problems

“More computing sins are committed in the name
of efficiency (without necessarily achieving it)
than for any other single reason — including blind
stupidity.” — William A. Wulf

Performance Increases
without Code Tuning

Lower your Standards/Requirements

High Level Design

The overall program structure can play a
huge role



Performance Increases
without Code Tuning

Lower your Standards/Requirements
High Level Design

Class/Routine Design
- Algorithms used can have real differences

- Can have largest effect, especially
asymptotically

Performance Increases
without Code Tuning

Lower your Standards/Requirements
High Level Design

Class/Routine Design

Interactions with Operating System

Upgrade Hardware
- Straightforward, if possible...

Performance Increases
without Code Tuning

Lower your Standards/Requirements
High Level Design
Class/Routine Design

Interactions with Operating System

- Hidden OS calls within libraries — their
performance affects overall code

Performance Increases
without Code Tuning

* Lower your Standards/Requirements
* High Level Design

* Class/Routine Design

* Interactions with Operating System

* Upgrade Hardware

* Compiler Optimizations

- “Automatic” optimization,
- Getting better and better, though not perfect
- Different compilers work better/worse



Code Profiling

* Determine where code is spending time

- No sense in optimizing where no time is
spent
* Provide basis for measurement
- Determine whether “improvement” really
improved anything
* Need to take precise measurements

What Is Tuning?

* Making small-scale adjustments to correct
code in order to improve performance
- After code is written and working
* Affects only small-scale: a few lines, or at
most one routine

- Examples: adjusting details of loops, expressions

* Code tuning can sometimes improve code
efficiency tremendously

Profiling Techniques

Profiler — compile with profiling options, and run
through profiler

- Gets list of functions/routines, and amount of time spent in
each

Use system timer
- Less ideal
- Might need test harness for functions

Use system-supported real time
- Only slightly better than wristwatch...

Graph results for understanding

- Multiple profile results: see how profile changes for different
input types

What Tuning is Not

Reducing lines of code

- Not an indicator of efficient code
A guess at what might improve things

- Know what you’re trying, and measure results
Optimizing as you go

- Wait until finished, then go back to improve,

- as optimizing while programming is often a waste
A “first choice” for improvement

- Worry about other details/design first



Common Inefficiencies Operation Costs

* Unnecessary /O operations * Different operations take different times
- File access especially slow - Integer division longer than other ops

* Paging/Memory issues - Transcendental functions (sin, sqrt, etc.)
-~ Can vary by system even longer

* System Calls - Knowing this can help when tuning

* Interpreted Languages
- C/C++/VB tend to be “best”
- Java about 1.5 times slower
- PHP/Python about 100 times slower

* Vary by language
- In C++, private routine calls take about

twice the time of an integer op, and in
Java about half the time.

Remember

* Code readability/maintainability/etc. is
usually more important than efficiency

* Always start with well-written code, and
only tune at the end

* Measure!



