
Design Patterns

CSCE 315 – Programming Studio

adpted from John Keyser's 315 slides

Design Patterns in General

 When designing in some field, often the same
general type of problems are encountered

 Usually, there are a set of ways that are “good” for
handling such design problems

 Rather than reinventing these good solutions, it
would be helpful to have a way to recognize the
design problem, and know what good solutions to it
would tend to be (or already exist!).

 In architecture, a 1977 book, A Pattern Language,
Christopher Alexander et al. introduced the idea of a
way of describing design solutions

Pattern Language
 The idea is to describe how good design is achieved

for a field
− Ideas that are “settled” and well understood are good

 Key aspects of a pattern language include:
− Identifying common, general (somewhat abstract)

problems.
− Finding common “good” ways of addressing these

problems
− Giving names to these solutions (patterns)

 Identification, understanding, communication

− Giving description of the patterns:
 When and how to apply it
 What the effects of applying it are
 How it interacts with other patterns

Design Patterns in
Computer Science

 The idea developed over time, but became popular
with Design Patterns: Elements of Reusable Object-
Oriented Software by Erich Gamma, Richard Helm,
Ralph Johnson, John Vlissides, published in 1995.

 Authors often called the “Gang of Four”, and the
book sometimes called the GOF book

 Closely tied to Object-Oriented Programming,
although the principles are not limited to OOP

Design Pattern
Elements

 Pattern name
− Name to describe it concisely

 Problem
− When to apply the pattern

 Solution
− What is involved in the pattern

 Consequences
− Results and tradeoffs

Design Pattern
Descriptions (GOF)

 Intent
 Also Known As
 Motivation (scenario)
 Applicability (when to use)
 Structure (diagram of how it works)
 Participants (other things it uses)
 Collaborations (how it interacts with other stuff)
 Consequences (results and tradeoffs)
 Implementation (Pitfalls/hints/techniques)
 Sample Code
 Known Uses (examples in real systems)
 Related Patterns (closely related design patterns)

Organizing Patterns

 Several Classification Schemes
− Purpose
− Scope (objects vs. classes)
− Relationships
− Functional (grouping similar ones)
− etc.

Purposes of Design Patterns

 Creational
− Deal with object creation

 Structural
− Deal with how objects/classes are composed

 Behavioral
− Deal with how classes/objects interact

 Others for specific domains
− e.g. Concurrency
− e.g. User interface

Example Creational:
Factory Method

 Intent: Define an interface for creating an object, but
let subclasses decide which class to instantiate.
Defers instantiation to subclasses.

 Allows code to work with an interface, not the
underlying concrete product

 Can be abstract (no default), or provide a default that
is overridden by subclasses

 Allows subclasses to specialize and replace the
default implementation

Example

 Instead of:
Book* Publisher::CreateBook() {

Book* aBook = new Book();

Chapter* c1 = new Chapter(1);

Chapter* c2 = new Chapter(2);

aBook->addChapter(c1);

aBook->addChapter(c2);

}

Example

 Use:
Book* Publisher::CreateBook() {

Book* aBook = makeBook();

Chapter* c1 = makeChapter(1);

Chapter* c2 = makeChapter(2);

aBook->addChapter(c1);

aBook->addChapter(c2);

}

Example Structural:
Adapter

 aka Wrapper
 Intent: Convert the interface of a class

into another interface clients expect.
Adapter lets classes work together that
couldn’t otherwise because of
incompatible interfaces.

 Example: Interface to game AI program

Example Structural:
Composite

 Intent: Compose objects into tree structures to
represent part-whole hierarchies. Composite lets
clients treat individual objects and compositions of
objects uniformly.

 Composite could be a “leaf” (basic object), in which
case, it behaves just like that object

 Composite could be a combination of other objects
in a hierarchy. Performs some general operations,
then usually calls children

 Example: translating an object (or group of objects)
in computer graphics

Example Behavioral:
Iterator

 Intent: Provide a way to access the
elements of an aggregate object
sequentially without exposing its
underlying representation

 Note: does not assume that there is a
“true” sequential ordering

 Examples: tree traversal in preorder,
postorder, inorder; records returned by
DB query.

Example Behavioral:
Observer

 Intent: Define a one-to-many dependency between
objects so that when one object changes state, all its
dependents are notified and updated automatically.

 Example: multiple graph view of same data set (as
bar chart, pie chart, etc.); graphs update when base
data changes

 Usually attach/detach observers from a subject
− Observers get called whenever subject changes
− Subject does not have to worry about how the observers

work, it just calls a “notify” to each of them.

Patterns (GOF book)

 Creational:
− Abstract Factory
− Builder
− Factory Method
− Prototype
− Singleton

Patterns (GOF book)

 Structural:
− Adapter
− Bridge
− Composite
− Decorator
− Façade
− Flyweight
− Proxy

Patterns (GOF book)

 Behavioral:
− Chain of Responsibility
− Command
− Interpreter
− Iterator
− Mediator
− Memento
− Observer
− State
− Strategy
− Template Method
− Visitor

Summary

 Many patterns out there
− But, a key to usefulness is being

commonly recognized
 Takes experience and practice to get

used to identifying/using them

