
Collaborative Code Construction:
Code Reviews and Pair

Programming
CPSC 315 – Programming Studio

adapted from John Keyser's 315 slides

Collaborative Construction

 Working on code development in close
cooperation with others

 Idea
− Developers don’t notice their own errors

very easily
− Others won’t have the same blind spots
− Thus, errors are caught more easily by

other people
 Takes place during the construction

process

Benefits of Collaborative
Construction

 Can be much more effective at finding errors
than testing alone

− 35% errors found through testing through low-
volume Beta level

− 55-60% errors found by design/code inspection
 Finds errors earlier in the process

− Reduces time and cost of fixing them
 Provides mentoring opportunity

− Junior programmers learn from more senior
programmers

More Benefits

 Creates collaborative ownership
− No single “owner” of code
− People can leave team more easily, since

others have seen code
− Wider pool of people to draw from when

fixing later errors in code

Some Types of Collaborative
Construction

 Formal inspections
 Walkthroughs
 Code reading
 Pair programming

Code Reviews
 Method shown to be extremely effective in

finding errors
− ratio of time spent in review vs. later testing and

error correction ranges from 1:20 to 1:100
− Reduced defect correction from 40% of budget to

20%
− Maintenance costs of inspected code is 10% of

non-inspected code
− Changes done with review: 95% correct vs. 20%

without
− Reviews cut errors by anywhere from 20% to

80%
− Several others (examples from Code Complete)

Reviews vs. Testing

 Finds different types of problems than testing
− Unclear error messages
− Bad commenting
− Hard-coded variable names
− Repeated code patterns

 Only high-volume beta testing (and
prototyping) find more errors than formal
inspections

 Inspections typically take 10-15% of budget,
but usually reduce overall project cost

Formal Inspection
Characteristics

 Focus on detection, not correction
 Reviewers prepare ahead of time and arrive

with a list of what they’ve discovered
− Don’t meet unless everyone is prepared

 Distinct roles assigned to participants
− Stick to these roles during review

 Data is collected and fed into future reviews
− Checklists focus reviewers’ attention on common

past problems

Roles during Inspection

 Moderator
 Author
 Reviewer(s)
 Scribe
 Management

 3 people min
 ~6 people

max

Roles during Inspection

• Moderator
 Author
 Reviewer(s)
 Scribe
 Management

 3 people min
 ~6 people

max

• Keeps review moving
– Not too fast or slow

 Technically competent
 Handles all meeting

details
 distributing design/code
 distributing checklist
 Setting up room
 Report and followup

Roles during Inspection

 Moderator
• Author
 Reviewer(s)
 Scribe
 Management

 3 people min
 ~6 people

max

Plays minor role
 Design/Code should speak

for itself
Should explain parts that
aren’t clear

 But this alone can be a
problem

 Explain why things that
seem to be errors aren’t

Might present overview

Roles during Inspection

 Moderator
 Author
• Reviewer(s)
 Scribe
 Management

 3 people min
 ~6 people

max

• Interest in code but not
an author

• Find errors during
preparation

• Find more errors during
meeting

Roles during Inspection

 Moderator
 Author
 Reviewer(s)
• Scribe
 Management

 3 people min
 ~6 people

max

• Records errors found
and action assigned or
planned

• Should not be moderator
or author

Roles during Inspection

 Moderator
 Author
 Reviewer(s)
 Scribe
• Management

 3 people min
 ~6 people

max

 Usually should not be
involved

 Changes from technical to
political meeting

Might need to see results
of meeting

Stages of Inspection –
Planning

 Author gives code/design to moderator
 Moderator then:

− chooses reviewers
− ensures code is appropriate for review

 e.g. line numbers printed

− distributes code and checklist
− sets meeting time

Stages of Inspection –
Overview

 If reviewers aren’t familiar with code at
all, can have overview

 Author gives a brief description of
technical requirements for code

 Separate from review meeting
 Can have negative consequences

− Groupthink
− Minimize points that should be more

important

Stages of Inspection –
Preparation

 Reviewers work alone to scrutinize for errors
− Checklist can guide examination

 Depending on code, review rate varies
− 125 to 500 lines per hour

 Reviewers can have varied “roles”
− be assigned “perspective”

 e.g. evaluate from user’s view, or from designer’s view
− evaluate different scenarios

 e.g. describe what code does, or whether requirement
is met

− read code/design in certain order/way
 e.g. top-down, or bottom-up

Stages of Inspection –
 Inspection Meeting

 A reviewer chosen to paraphrase design or read
code

− Explain all logic choices in program
 Moderator keeps things moving/focused
 Scribe records errors when found

− Record type and severity
 Don’t discuss solutions!

− Only focus is on identifying problems
− Sometimes don’t even discuss if it actually is an error – if it

seems like one, it is one
 No more than 1 per day, about a 2 hour limit

Stages of Inspection –
“Third Hour” meeting

 Depending on interest/stake of
reviewers, possibly hold a separate
followup meeting

− Immediately after inspection meeting
 Focus here is to discuss possible

solutions

Stages of Inspection –
Inspection Report

 Moderator produces report shortly after
meeting

− List of defects, types, and severity
 Use this report to update checklist to be used

in future inspections
− List main types of errors commonly found
− No more than 1 page total length

 Collect data on time spent and number of
errors

− Helps evaluate how well things work, justify effort

Stages of Inspection –
Rework

 Moderator assigns defects to someone
to repair

− Usually the author

Stages of Inspection –
Follow-Up

 Moderator verifies that work assigned
was carried out.

 Depending on number and severity of
errors, could take different forms:

− Just check with author that they were fixed
− Have reviewers check over the fixes
− Start cycle over again

Adjusting Inspections Over
Time

 Organizations will have characteristics
of code unique to them

− Density of code determines how fast
reviewers and inspection meeting can go
(application tends to be faster than system
code/design)

− Checklists highlight common problems
 Measure effect of any changes

− Evaluate whether they actually improved
process

Inspections and Human Egos
 Point is to improve code

− Not debate alternative implementations
− Not discuss who is wrong/right
− Moderator needs to control discussion

 Author needs to be able to take criticism of
code

− May have things mentioned that aren’t “really”
errors

− Don’t debate and defend work during review
 Reviewers need to realize the code is not

“theirs”
− Up to author (or someone else) to determine fix

Walkthroughs

 Alternative to formal code inspection
 Vague term, many interpretations

− Less formal than inspections, though
 Usually hosted and moderated by author
 Chance for senior and junior programmers to

mix
 Like inspection:

− Preparation required
− Focus on technical issues
− Goal is detection, not correction
− No management

Walkthrough Evaluation

 In best cases, can match formal code
inspections in quality

 In worst cases, can lower productivity,
eating more time than saved

 Can work well for large groups
 Can work well when bringing in

“outsiders”

Code Reading

 Alternative to inspections and
walkthroughs

 Author gives out code to two or more
reviewers

 They read independently
 Meeting held for everyone

− Reviewers present what they’ve found, but
don’t do a code walkthrough

Code Reading Evaluation

 Most errors tend to be found in
individual review

− Reduces effort and overhead of managing
group dynamics at inspection meeting

− Maximizes productive effort per person –
time not wasted in meetings where others
are speaking

 Works well for geographically
distributed reviewers

Pair Programming

 Basic idea: One person codes with another
looking over the shoulder.

 Person at the keyboard writes code
 Second person is active participant

− Watch for errors
− Think strategically about code

 What’s next?
 Is code meeting overall goal/design?
 How to test this code

Successful Pair Programming

 Standardize coding style
 Don’t force pairs for easy tasks
 Rotate pairs and work assignments

frequently
 Use “good” matches

− Avoid personality conflicts
− Avoid major differences in speed/experience

 Set up good work environment
 At least one pair member should be

experienced

Evaluating Pair Programming

 Seems to achieve quality level similar
to formal inspection

 Tends to decrease development time
− Code written faster, fewer errors

 Tends to be higher quality code
− Holds up better during crunch time – fewer

shortcuts taken that come back to haunt
 All the traditional collaborative benefits

