Testing

Testing

CPSC 315 – Programming Studio

Testing helps find that errors exist

- Debugging finds and fixes them
- Systematic attempt to break a program that is working
- Unlike all other parts of software development, whose goal is to avoid errors
- Can never prove absence of errors
- Testing alone does not improve quality

Types of Testing

- Unit testing
 - Testing of a single class, routine, program
 - Usually single programmer
 - Testing in isolation from system
- Component testing
 - Testing of a class, package, program
 - Usually small team of programmers
- Integration testing
 - Combined test of two or more classes, packages, components, or subsystems

Types of Testing (continued)

- Regression testing
 - Repetition of previously tested cases to find new errors introduced
- System testing
 - Executing software in final configuration, including integration with all other systems and hardware
 - Security, performance, resource loss, timing issues

Other Testing

- Usually by specialized test personnel
 - User tests
 - Performance tests
 - Configuration tests
 - Usability tests
 - Etc.
- We're interested in developer tests

Writing Test Cases First

- Helps identify errors more quickly
- Doesn't take any more effort than writing tests later
- Requires thinking about requirements and design before writing code
- Shows problems with requirements sooner (can't write code without good requirements)

Testing As You Write Code

- Boundary Testing
- Pre- and Post-conditions
- Assertions
- Defensive Programming
- Error Returns
- Waiting until later means you have to relearn code
 - Fixes will be less thorough and more fragile

Boundary Testing

- Most bugs occur at boundaries
 - If it works at and near boundaries, it likely works elsewhere
- Check loop and conditional bounds when written
 - Check that extreme cases are handled
 - e.g. Full array, Empty array, One element array
 - Usually should check value and +/- 1
- Mental test better than none at all

Preconditions and Postconditions

- Verify that routine starts with correct preconditions and produces correct postconditions
- Check to make sure preconditions met
 - Handle failures cleanly
- · Verify that postconditions are met
 - No inconsistencies created
- Need to define pre-/postconditions clearly
- "Provable" software relies on this approach

Assertions

- Available in C/C++
 - assert.h
- Way of checking for pre-/postconditions
- Helps identify where problem occurs
 - Before the assertion
 - e.g. usually in calling routine, not callee
- Problem: causes abort
 - So, useful for testing for errors

Defensive Programming

- Add code to handle the "can't happen" cases
- Program "protects" itself from bad data

Error Returns

- Good API and routine design includes error codes
- Need to be checked

Systematic Testing

- Test of complete code pieces
- Test incrementally
- Test simple parts first
- Know what output to expect
- Verify conservation properties
- Compare independent implementations
- Measure test coverage

Test Incrementally

- Don't wait until *everything* is finished before test
- Test components, not just system
- Test components individually before connecting them

Test Simple Parts First

- Test most basic, simplest features
- Finds the "easy" bugs (and usually most important) first

Know What Output To Expect

- Design test cases that you will know the answer to!
- Make hand-checks convenient
- Not always easy to do
 - e.g. compilers, numerical programs, graphics

Verify Conservation Properties

- Specific results may not be easily verifiable
 - Have to write the program to compute the answer to compare to
- But, often we have known output properties related to input
 - e.g. #Start + #Insert #Delete = #Final
- Can verify these properties even without verifying larger result

Compare Independent Implementations

- Multiple implementations to compute same data should agree
- Useful for testing tricky code, e.g. to increase performance
 - Write a slow, brute-force routine
 - Compare the results to the new, "elegant" routine
- If two routines communicate (or are inverses), different people writing them helps find errors
 - Only errors will be from consistent misinterpretation of description

Measure Test Coverage

- What portion of code base is actually tested?
- Techniques to work toward this
 Following slides
- Tend to work well on only small/moderate code pieces
- For large software, tools help judge coverage

Logic Coverage

- Or, Code Coverage
- Testing every branch, every path through the code
- Can grow (nearly) exponentially with number of choices/branches
- Only suitable for small to medium size codes

Structured Basis Testing

- Testing every line in a program
 - Ensure that every statement gets tested
 - Need to test each part of a logical statement
- Far fewer cases than logic coverage
 - But, also not as thorough
- Goal is to minimize total number of test cases
 - One test case can test several statements

Structured Basis Testing (continued)

- Start with base case where all Boolean conditions are true
 - Design test case for that situation
- Each branch, loop, case statement increases minimum number of test cases by 1
 - One more test case per variation, to test the code for that variation

Data Flow Testing

- Examines data rather than control
- Data in one of three states
 - Defined Initialized but not used
 - Used In computation or as argument
 - Killed Undefined in some way
- Variables related to routines
 - Entered Routine starts just before variable is acted upon
 - Exited Routine ends immediately after variable is acted upon

Data Flow Testing (continued)

- First, check for any anomalous data sequences
 - Defined-defined
 - Defined-exited
 - Defined-killed
 - Entered-killed
 - Entered-used
 - Killed-killed
 - Killed-used
 - Used-defined
- Often can indicate a serious problem in code design
- After that check, write test cases

Data Flow Testing (continued)

- Write test cases to examine all defined-٠ used paths
- Usually requires •
 - More cases than structured basis testing
 - Fewer cases than logic coverage

Example

```
if (cond1) {
                     Logic Coverage / Code Coverage
   x = a;
                     Conditions: T T T
   x = b;
                     Conditions: T T F
if (cond2) {
                     Conditions: T F T
   y = x+1;
                     Conditions: T F F
   v = x+2;
                     Conditions: F T T
if (cond3) {
   z = c;
                     Conditions: F T F
                     Conditions: F F T
   z = d;
                     Conditions: F F F
```

Tests all possible paths

Example

```
if (cond1) {
    x = a;
} else {
    x = b;
if (cond2) {
    y = x+1;
} else {
    y = x+2;
if (cond3) {
    z = c;
} else {
    z = d;
```

Structured Basis Testing Conditions: T T T Conditions: F F F Tests all lines of code

```
if (cond1) {
    x = a;
} else {
    x = b;
if (cond2) {
    y = x+1;
} else {
    y = x+2;
if (cond3) {
    z = c;
} else {
    z = d;
```

} else {

} else {

} else {

Example

- Data Flow Testing
- Conditions: T T T 1.
 - Conditions: T F F
 - Conditions: FT?
 - Conditions: F F ?
 - Tests all defined-used paths
 - Note: cond3 is independent of first two

Example

- if (cond1) { x = a;} else { x = b;if (cond2) { y = x+1;} else { y = x+2;if (cond3) { z = c;} else { z = d;
- Data Flow Testing Conditions: T T T Conditions: T F F 2. Conditions: FT? Conditions: F F ? Tests all defined-used paths
 - Note: cond3 is independent of first two

Example

- if (cond1) { Data Flow Testing Conditions: T T T Conditions: T F F if (cond2) { y = x+1;Conditions: FT? 3
 - Conditions: F F ?
 - Tests all defined-used paths
 - Note: cond3 is independent of first two

Example

- if (cond1) { x = a;} else { x = b;if (cond2) { y = x+1;} else { y = x+2;if (cond3) { z = c;} else { z = d;
- Data Flow Testing Conditions: T T T Conditions: T F F
 - Conditions: FT?
- Conditions: F F ? 4
 - Tests all defined-used paths
 - Note: cond3 is independent of first two

Test Case Design (If you don't know the code)

- Boundary analysis still applies
- Equivalence partitioning
 - Don't create multiple tests to do the same thing
- Bad data

x = a;

x = b;

v = x+2;

if (cond3) {

z = c;

z = d;

} else {

} else {

} else {

- Too much/little
- Wrong kind/size
- Uninitialized
- Good data
 - Minimum/maximum normal configuration
 - "Middle of the Road" data
 - Compatibility with old data

Test Automation

- Should do lots of tests, and by-hand is not usually appropriate
- Scripts can automatically run test cases, report on errors in output
 - But, we need to be able to analyze output automatically...
 - Can't always simulate good input (e.g. interactive programs)
- People cannot be expected to remain sharp over many tests
- Automation reduces workload on programmer, remains available in the future

Regression Testing

- Goal: Find anything that got broken by "fixing" something else
- Save test cases, and correct results
- With any modifications, run new code against all old test cases
- Add new test cases as appropriate

Test Support Tools

- Test Scaffold
 - Framework to provide just enough support and interface to test
 - Stub Routines and Test Harness
- Test Data Generators
- System Perturber

Stub Routines

- Dummy object/routine that doesn't provide full functionality, but pretends to do something when called
 - Return control immediately
 - Burn cycles to simulate time spent
 - Print diagnostic messages
 - Return standard answer
 - Get input interactively rather than computed
 - Could be "working" but slow or less accurate

Test Harness

- Calls the routine being tested
 - Fixed set of inputs
 - Interactive inputs to test
 - Command line arguments
 - File-based input
 - Predefined input set
- Can run multiple iterations

Test Data Generators

- Can generate far more data than by hand
- Can test far wider range of inputs
- Can detect major errors/crashes easily
- Need to know answer to test correctness
 - Useful for "inverse" processes e.g. encrypt/decrypt
- Should weight toward realistic cases

System Perturbers

- Modify system so as to avoid problems that are difficult to test otherwise
 - Reinitialize memory to something other than 0
 - Find problems not caught because memory is "usually" null
 - Rearrange memory locations
 - Find problems where out-of-range queries go to a consistent place in other tests
 - Memory bounds checking
 - Memory/system failure simulation

Other Testing Tools

- Diff tools
 - Compare output files for differences
- Coverage monitors
 - Determine which parts of code tested
- Data recorder/loggers
 - Log events to files, save state information
- Error databases
 - Keep track of what's been found, and rates of errors
- Symbolic debuggers
 - Will discuss debugging later, but useful for tests