
The Software Design 
Process

CPSC 315 – Programming Studio

Outline

 Challenges in Design
 Design Concepts
 Heuristics
 Practices

Challenges in Design

 A problem that can only be defined by 
solving it

− Only after “solving” it do you understand 
what the needs actually are

− e.g. Tacoma Narrows bridge design
− “Plan to throw one away”

Challenges in Design

 Process is Sloppy
− Mistakes
− Wrong, dead-end paths
− Stop when “good enough”

 Tradeoffs and Priorities
− Determine whether design is good
− Priorities can change



Challenges in Design

 Restrictions are necessary
− Constraints improve the result

 Nondeterministic process
− Not one “right” solution

 A Heuristic process
− Rules of thumb vs. fixed process

 Emergent
− Evolve and improve during design, coding

Levels of Design

 Software system as a whole
 Division into subsystems/packages
 Classes within packages
 Data and routines within classes
 Internal routine design

 Work at one level can affect those below and 
above.

 Design can be iterated at each level

Key Design Concepts

 Most Important: Manage Complexity
− Software already involves conceptual 

hierarchies, abstraction
− Goal: minimize how much of a program 

you have to think about at once
− Should completely understand the impact 

of code changes in one area on other 
areas

Good Design Characteristics

Minimal complexity Favor “simple” over 
“clever”



Good Design Characteristics

 Minimal complexity

Ease of maintenance
Imagine what 
maintainer of code 
will want to know
Be self-explanatory

Good Design Characteristics

 Minimal complexity
 Ease of maintenance

Loose coupling

Keep connections 
between parts of 
programs minimized
 Avoid n2 interactions!

Abstraction, 
encapsulation, 
information hiding

Good Design Characteristics

 Minimal complexity
 Ease of maintenance
 Loose coupling

Extensibility

Should be able to 
add to one part of 
system without 
affecting others

Good Design Characteristics

 Minimal complexity
 Ease of maintenance
 Loose coupling
 Extensibility

Reusability

Design so code 
could be “lifted” into 
a different system
Good design, even if 
never reused



Good Design Characteristics

 Minimal complexity
 Ease of maintenance
 Loose coupling
 Extensibility
 Reusability

High fan-in

For a given class, 
have it used by 
many others
Indicates good 
capture of 
underlying functions

Good Design Characteristics

 Minimal complexity
 Ease of maintenance
 Loose coupling
 Extensibility
 Reusability
 High fan-in

Low-to-medium fan-out

Don’t use too many 
other classes
Complexity 
management

Good Design Characteristics

 Minimal complexity
 Ease of maintenance
 Loose coupling
 Extensibility
 Reusability
 High fan-in
 Low-to-medium fan-out

Portability

Consider what will 
happen if moved to 
another environment

Good Design Characteristics

 Minimal complexity
 Ease of maintenance
 Loose coupling
 Extensibility
 Reusability
 High fan-in
 Low-to-medium fan-out
 Portability

Leanness

Don’t add extra parts
Extra code will need 
to be tested, 
reviewed in future 
changes



Good Design Characteristics

 Minimal complexity
 Ease of maintenance
 Loose coupling
 Extensibility
 Reusability
 High fan-in
 Low-to-medium fan-out
 Portability
 Leanness

Stratification

Design so that you 
don’t have to 
consider beyond the 
current layer

Good Design Characteristics

 Minimal complexity
 Ease of maintenance
 Loose coupling
 Extensibility
 Reusability
 High fan-in
 Low-to-medium fan-out
 Portability
 Leanness
 Stratification

Standard Techniques

Use of common 
approaches make it 
easier to follow code 
later
Avoid unneeded 
exotic approaches

Design Heuristics

 Rules-of-thumb
− “Trials in Trial-and-Error”

 Understand the Problem
 Devise a Plan
 Carry Out the Plan
 Look Back and Iterate

Find Real-World Objects

 Standard Object-Oriented approach
 Identify objects and their attributes
 Determine what can be done to each object
 Determine what each object is allowed to do 

to other objects
 Determine the parts of each object that will 

be visible to other objects (public/private)
 Define each object’s public interface



Form Consistent Abstractions

 View concepts in the aggregate
− “Car” rather than “engine, body, wheels, etc.”

 Identify common attributes
− Form base class

 Focus on interface rather than 
implementation

 Form abstractions at all levels
− Car, Engine, Piston

Inheritance

 Inherit when helpful
− When there are common features

Information Hiding

 Interface should reveal little about inner 
workings

− Example: Assign ID numbers
 Assignment algorithm could be hidden
 ID number could be typed

− Encapsulate Implementation Details
 Don’t set interface based on what’s easiest 

to use
− Tends to expose too much of interior

 Think about “What needs to be hidden”

More on Information Hiding

 Two main advantages
− Easier to comprehend complexity
− Localized effects allow local changes

 Issues:
− Circular dependencies

 A->B->A

− Global data (or too-large classes)
− Performance penalties

 Valid, but less important, at least at first



Identify Areas Likely to 
Change

 Anticipate Change
− Identify items that seem likely to change
− Separate these items into their own class
− Limit connections to that class, or create 

interface that’s unlikely to change
 Examples of main potential problems:
Business Rules, Hardware Dependencies, 

Input/Output, Nonstandard language features, status 
variables, difficult design/coding areas

Keep Coupling Loose

 Relations to other classes/routines
 Small Size

− Fewer parameters, methods
 Visible

− Avoid interactions via global variables
 Flexible

− Don’t add unnecessary dependencies
− e.g. using method that’s not unique to the class it 

belongs to

Kinds of Coupling

 Data-parameter (good)
− Data passed through parameter lists
− Primitive data types

 Simple-object (good)
− Module instantiates that object

 Object-parameter (so-so)
− Object 1 requires Object 2 to pass an Object 3

 Semantic (bad)
− One object makes use of semantic information 

about the inner workings of another

Examples of Semantic 
Coupling

 Module 1 passes control flag to Module 2
− Can be OK if control flag is typed

 Module 2 uses global data that Module 1 modifies
 Module 2 relies on knowledge that Module 1 calls 

initialize internally, so it doesn’t call it
 Module 1 passes Object to Module 2, but only 

initializes the parts of Object it knows Module 2 
needs

 Module 1 passes a Base Object, but Module 2 
knows it is actually a Derived Object, so it typecasts 
and calls methods unique to the derived object



Design Patterns

 Design Patterns, by “Gang of Four” 
(Gamma, Helm, Johnson, Vlissides)

 Common software problems and 
solutions that fall into patterns 

 Provide ready-made abstractions
 Provide design alternatives
 Streamline communication among 

designers

More on Design Patterns

 Given common names
− e.g. “Bridge” – builds an interface and an 

implementation in such a way that either 
can vary without the other varying

 Could go into much more on this

Other Heuristics

 Strong Cohesion
− All routines support the main purpose

 Build Hierarchies
− Manage complexity by pushing details away

 Formalize Class Contracts
− Clearly specify what is needed/provided

 Assign Responsibilities
− Ask what each object should be responsible for

More Heuristics

 Design for Test
− Consider how you will test it from the start

 Avoid Failure
− Think of ways it could fail

 Choose Binding Time Consciously
− When should you set values to variables

 Make Central Points of Control
− Fewer places to look -> easier changes



More Heuristics

 Consider Using Brute Force
− Especially for early iteration
− Working is better than non-working

 Draw Diagrams
 Keep Design Modular

− Black Boxes

Design Practices
(we may return to these)

 Iterate – Select the best of several attempts
 Decompose in several different ways
 Top Down vs. Bottom Up
 Prototype
 Collaborate: Have others review your design 

either formally or informally
 Design until implementation seems obvious

− Balance between “Too Much” and “Not Enough”
 Capture Design Work

− Design documents


