
API Design

CPSC 315 – Programming Studio

Follows Kernighan and Pike, The Practice of Programming and
Joshua Bloch’s Library-Centric Software Design ’05 Keynote Talk: 
”How to Design a Good API and Why It Matters”

API

 Application Programming Interface
 Source code interface

− For library or OS
− Provides services to a program

 At its base, like a header file
− But, more complete

Why is API Design Important?

 Company View
− Can be asset – big user investment in 

learning and using
− Bad design can be source of long-term 

support problems
 Once used, it’s tough to change

− Especially if there are several users
 Public APIs – One chance to get it right

Characteristics of Good APIs

 Easy to learn
 Easy to use even without documentation
 Hard to misuse
 Easy to read and maintain code that uses it
 Sufficiently powerful to satisfy requirements
 Easy to extend
 Appropriate to audience



Designing an API

 Gather requirements
− Don’t gather solutions
− Extract true requirements
− Collect specific scenarios where it will be used

 Create short specification
− Consult with users to see whether it works
− Flesh it out over time

 Hints:
− Write plugins/use examples before fully designed 

and implemented
− Expect it to evolve

Broad Issues to Consider in 
Design

 1. Interface
− The classes, methods, parameters, names

 2. Resource Management
− How is memory, other resources dealt with

 3. Error Handling
− What errors are caught and what is done

 Information Hiding
− How much detail is exposed
− Impacts all three of the above

1. Interface Principles

 Simple
 General
 Regular
 Predictable
 Robust
 Adaptable 

Simple

 Users have to understand!
 Do one thing and do it well

− Functionality should be easy to explain
 As small as possible, but never smaller

− Conceptual weight more important than providing 
all functionality

− Avoid long parameter lists
 Choose small set of orthogonal primitives

− Don’t provide 3 ways to do the same thing



General

 Implementation can change, API can’t
 Hide Information!

− Don’t let implementation detail leak into API
− Minimize accessibility issues (e.g. private classes 

and members)
− Implementation details can confuse users

 Be aware of what is implementation
− Don’t overspecify behavior of modules
− Tuning parameters are suspect

Regular

 Do the same thing the same way everywhere
− Related things should be achieved by related 

means
 Consistent parameter ordering, required inputs
 Functionality (return types, errors, resource 

management)

 Names matter
− Self explanatory
− Consistent across API

 Same word means same thing in API
 Same naming style used
 Consistent with related interfaces outside the API

Predictable

 Don’t violate the principle of Least 
Astonishment

− User should not be surprised by behavior
− Even if this costs performance

 Don’t reach behind the user’s back
− Accessing and modifying global variables
− Secret files or information written
− Be careful about static variables 

Predictable

 Try to minimize use of other interfaces
− Make as self-contained as possible
− Be explicit about external services 

required
 Document!

− Every class, method, interface, 
constructor, parameter, exception

− When states are kept, this should be very 
clearly documented



Robust

 Able to deal with unexpected input
 Error Handling (see later)

Adaptable

 API can be extended, but never 
shortened

− Heavily used APIs likely will be extended
 Information Hiding

− Implementation details should not affect 
API

2. Resource Management

 Determine which side is responsible for
− Initialization
− Maintaining state
− Sharing and copying
− Cleaning up

 Various resources
− Memory
− Files
− Global variables

Resource Management

 Generally, free resources where they were 
allocated

 Return references or copies?
− Can have huge performance and ease of use 

impact
 Multi-threaded code makes this especially 

critical
− Reentrant: works regardless of number of 

simultaneous executions
− Avoid using anything (globals, static locals, other 

modifications) that others could also use
− Locks can be important



3. Error Handling

 Catch errors, don’t ignore them
 “Print message and fail” is not always good

− Especially in APIs
− Need to allow programs to recover or save data

 Detect at low level, but handle at high level
− Generally, error should be handled by calling 

routine
− The callee can leave things in a “nice” state for 

recovery, though
 Keep things usable in case the caller can recover

Fail Fast

 Report as soon as an error occurs
 Sometimes even at compile time!

− Use of static types, generics

Error Management

 Return values
− Should be in form the calling function can use
− Return as much useful information as possible
− Sentinel values only work if function cannot return 

all possible values of that type
− Define pairs, or return another parameter to 

indicate errors
 Use error “wrapper function” if needed

− Consistent way of marking, reporting error status
− Encourages use
− But, can add complexity

Exceptions

 Generally indicate a programming error
 Programming construct

− Set exception value (e.g. as return)
− Other program operation when exception thrown
− Exceptions usually in global registry

 Include information about failure
− For repair and debugging

 Exceptions should generally be unchecked
− Automatically process globally, rather than 

require explicit checks over and over



Exceptions

 Only use in truly exceptional situations
− Never use as a control structure
− The modern GOTO

 Never use exceptions for expected 
return values

− e.g. Invalid file name passed to library is 
“common”, not an exception


