Layout and Style

Like naming, the goal is to
communicate

Again like naming, sometimes
conventions are in place

- Adhering to the convention in place will
usually lead to more readable code than
using your own “better” convention

Goal of layout and style is to increase

315 Programming Studio

Fundamental Theorem of

. White Space
Formatting P
* Used to indicate logical grouping
- Spacing between characters
- Indentation
* Studies show that organization is as - Blank lines

important to understanding as the
“details”

Indentation

Can clarify structure, especially in odd cases.
Studies show that 2-4 space indentation
works best.

- More indentation might “appear” better, but is not.
Now, usually editors provide automatically.

- But, variations for some statements:
* switch/case
* iflelseif

Brace conventions differ, but be consistent.

Parentheses

Parentheses can resolve ambiguity

- Particularly important since order of operations can
be problematic

Better to use more parentheses than you think
you need

Coupled with white space, can more quickly
highlight the grouping/ordering of operations

leap.year =y % 4 == 0 && y % 100 !'= 0 || y % 400 == 0;

Example Brace Conventions

while (something) {
blahblahblah

}

while (something)

{
blahblahblah

}

while (something) {
blahblahblah

}

Parentheses

* Parentheses can resolve ambiguity

- Particularly important since order of operations can

be problematic

* Better to use more parentheses than you think

you need

* Coupled with white space, can more quickly
highlight the grouping/ordering of operations

leap.year =y % 4 == 0 && y % 100 !'= 0 || y % 400 == 0;

Braces

* Like parentheses, use more braces
than you need.

* One-statement operation often

becomes more, later.
if (a > b)
max = a;

Braces

* Like parentheses, use more braces
than you need.

* One-statement operation often
becomes more, later.

Braces

* Like parentheses, use more braces
than you need.

* One-statement operation often

becomes more, later.
if (a > b)
max = a;
cout << “Set a new maximum.” << endl;

Braces

* Like parentheses, use more braces
than you need.

* One-statement operation often
becomes more, later.

Avoiding Complex
Expressions

* Goal is not to write most concise and clever
code.

* Break up expressions to make them clearer

* The “?” operator can be especially

problematic
*x += (*xp=(2*k < (n-m) ? c[k+1] : d[k--1));

Use “Natural Form” for
EXxpressions

* State conditional tests positively
if (!'(z>=0) && !'(z<a))

Avoiding Complex
EXxpressions

* Goal is not to write most concise and clever
code.

* Break up expressions to make them clearer

* The “?” operator can be especially

problematic
*x += (*xp=(2*k < (n-m) ? c[k+1] : d[k--1));

Use “Natural Form” for
EXxpressions

* State conditional tests positively
if (!(z>=0) && !(z<a))

* This can vary if the way it's expressed
better matches the underlying
algorithm

Use “idomatic” forms

* There are “common” ways of expressing
certain things.

- e.g. Use a for loop appropriately — try to keep all
loop control in the for statement, and keep other
operations outside of the for statement

for (i=0;i<n;i++)
a[i] = 0.0;

Use “idomatic” forms

* There are “common” ways of expressing
certain things.

- e.g. Use a for loop appropriately — try to keep all
loop control in the for statement, and keep other
operations outside of the for statement

for (i=0;i<n;a[i++]=0.0);
for (i=0;i<n;) {

a[i] = 0.0;

i++

Use “idomatic” forms

* There are “common” ways of expressing
certain things.

- e.g. Use a for loop appropriately — try to keep all
loop control in the for statement, and keep other
operations outside of the for statement

for (i=0;i<n;a[i++]=0.0);

Idiomatic forms

* e.g. use if elseif else form
if (condl) {
dothisi();
} else {
if (cond2) {
dothis2();
} else {
if (cond3) {
dothis3();
} else {
dothis4();

}

Idiomatic forms

* Use if elseif else form
if (condl) {
dothisi();
} else if (cond2) {
dothis2();
} else if (cond3) {
dothis3();
} else {
dothis4();

¥

If statements

* Read so that you look for the “true”
case rather than a “stack” of else cases

if (a <= 3) {

cerr << “Error 1” << endl;
} else if (b >= 12) {

cerr << “Error 2" << endl;
} else {

while ('EOF(f)) {

dothis();
}

If statements

* Read so that you look for the “true”
case rather than a “stack” of else cases

if (a > 3) {
if (b < 12) {
while ('EOF(f)) {
dothis();
}
} else {
cerr << “Error 2” << endl;
}
} else {
cerr << “Error 1” << endl;

Avoid Magic Numbers

Rule of thumb: any number other than
0 or 1 is probably a “magic number”

Can lead to tremendous debugging
problems when these numbers are
changed

Instead, define constants to give
names to those numbers.

Layout for Control Structures

* Put control in one line when possible

* Single indentation level for what it
affects

XXXXXX
XXXXX
XXXXX

* Group each part of a complicated
condition on its own line

Layout of Individual
Statements

* Line up related definitions or
assignments

StudentName = ProcessInputName();
StudentID = ProcessInputID();
StudentHometown = ProcessInputName();

* Don’t use more than one statement per
line.
- Likewise, define only one variable per line.
* Avoid side-effects (such as including
the ++ operator when doing something
else).

Layout of Individual
Statements

* White space can improve readability
- Spaces after commas

EvaluateEmployee(Name.First,EmployeeID,Date.Start,Date.End);

- Spaces between parts of conditions
if (((a<b)||(c>d))&&((a+b)<(c-d))&&((c-d)>2))
if (((a<b) || (c>d)) && ((at+b)<(c-d)) && ((c-d)>2))
if (((a<b) || (c>d)) &&

((atb) < (c-d)) &&

((c-d) > 2))

When a Line is Too Long

* Make it clear that the previous line is
not ending (e.g. end with an operator)

* Keep related parts of the line together
(don’t break single thought across line)

* Use indentation to highlight that there’s
a continuation

* Make it easy to find the end of the
continued line.

Layout of Routines Layout of Files

* Use standard indentation approach for * Clearly separate (multiple line breaks)
arguments. different routines in the same file

* Use blank lines to separate parts of - Don’t want to accidentally “merge” or
routines or blocks of common actions break” individual routines

- Sequence files in a logical manner
* In order of header file definition
* In alphabetical order
* Constructor, accessor, destructor, other

* Use comments (will return to) to identify
major breaks in conceptual flow

