
Communicating in Code:
Layout and Style

315 Programming Studio

Note: several examples in this lecture taken from The Practice of Programming by Kernighan and Pike

Layout and Style

 Like naming, the goal is to
communicate

 Again like naming, sometimes
conventions are in place

− Adhering to the convention in place will
usually lead to more readable code than
using your own “better” convention

 Goal of layout and style is to increase
clarity.

Fundamental Theorem of
Formatting

• Good visual layout shows the logical
structure of the program.

 Studies show that organization is as
important to understanding as the
“details”

White Space

 Used to indicate logical grouping
− Spacing between characters
− Indentation
− Blank lines

Indentation

 Can clarify structure, especially in odd cases.
 Studies show that 2-4 space indentation

works best.
− More indentation might “appear” better, but is not.

 Now, usually editors provide automatically.
− But, variations for some statements:

 switch/case
 if/elseif

 Brace conventions differ, but be consistent.

Example Brace Conventions

while (something) {

blahblahblah

}

while (something)

{

blahblahblah

}

while (something) {

 blahblahblah

 }

Parentheses

 Parentheses can resolve ambiguity
− Particularly important since order of operations can

be problematic
 Better to use more parentheses than you think

you need
 Coupled with white space, can more quickly

highlight the grouping/ordering of operations
leap_year = y % 4 == 0 && y % 100 != 0 || y % 400 == 0;

Parentheses

 Parentheses can resolve ambiguity
− Particularly important since order of operations can

be problematic
 Better to use more parentheses than you think

you need
 Coupled with white space, can more quickly

highlight the grouping/ordering of operations
leap_year = y % 4 == 0 && y % 100 != 0 || y % 400 == 0;

leap_year = ((y%4 == 0) && (y%100 != 0)) || (y%400 ==
0);

Braces

 Like parentheses, use more braces
than you need.

 One-statement operation often
becomes more, later.

if (a > b)

 max = a;

Braces

 Like parentheses, use more braces
than you need.

 One-statement operation often
becomes more, later.

if (a > b)

 max = a;

 cout << “Set a new maximum.” << endl;

Braces

 Like parentheses, use more braces
than you need.

 One-statement operation often
becomes more, later.

if (a > b) {

 max = a;

}

Braces

 Like parentheses, use more braces
than you need.

 One-statement operation often
becomes more, later.

if (a > b) {

 max = a;

 cout << “Set a new maximum.” << endl;

}

Avoiding Complex
Expressions

 Goal is not to write most concise and clever
code.

 Break up expressions to make them clearer
 The “?” operator can be especially

problematic
*x += (*xp=(2*k < (n-m) ? c[k+1] : d[k--]));

Avoiding Complex
Expressions

 Goal is not to write most concise and clever
code.

 Break up expressions to make them clearer
 The “?” operator can be especially

problematic
*x += (*xp=(2*k < (n-m) ? c[k+1] : d[k--]));

if (2*k < n-m)

 *xp = c[k+1];

else

 *xp = d[k--];

*x += *xp;

Use “Natural Form” for
Expressions

 State conditional tests positively
if (!(z>=0) && !(z<a))

Use “Natural Form” for
Expressions

 State conditional tests positively
if (!(z>=0) && !(z<a))

if ((z<0) && (z>=a))

 This can vary if the way it’s expressed
better matches the underlying
algorithm

Use “idomatic” forms

 There are “common” ways of expressing
certain things.

− e.g. Use a for loop appropriately – try to keep all
loop control in the for statement, and keep other
operations outside of the for statement

for (i=0;i<n;i++)

 a[i] = 0.0;

Use “idomatic” forms

 There are “common” ways of expressing
certain things.

− e.g. Use a for loop appropriately – try to keep all
loop control in the for statement, and keep other
operations outside of the for statement

for (i=0;i<n;i++)

 a[i] = 0.0;

for (i=0;i<n;a[i++]=0.0);

Use “idomatic” forms

 There are “common” ways of expressing
certain things.

− e.g. Use a for loop appropriately – try to keep all
loop control in the for statement, and keep other
operations outside of the for statement

for (i=0;i<n;i++)
 a[i] = 0.0;
for (i=0;i<n;a[i++]=0.0);
for (i=0;i<n;) {
 a[i] = 0.0;
 i++
}

Idiomatic forms

 e.g. use if elseif else form
if (cond1) {
 dothis1();
} else {
 if (cond2) {
 dothis2();
 } else {
 if (cond3) {
 dothis3();
 } else {
 dothis4();
 }
 }
}

Idiomatic forms

 Use if elseif else form
if (cond1) {

 dothis1();

} else if (cond2) {

 dothis2();

} else if (cond3) {

 dothis3();

} else {

 dothis4();

}

If statements

 Read so that you look for the “true”
case rather than a “stack” of else cases

if (a > 3) {
 if (b < 12) {
 while (!EOF(f)) {
 dothis();
 }
 } else {
 cerr << “Error 2” << endl;
 }
} else {
 cerr << “Error 1” << endl;
}

If statements

 Read so that you look for the “true”
case rather than a “stack” of else cases

if (a <= 3) {

 cerr << “Error 1” << endl;

} else if (b >= 12) {

 cerr << “Error 2” << endl;

} else {

 while (!EOF(f)) {

 dothis();

 }

}

Avoid Magic Numbers

 Rule of thumb: any number other than
0 or 1 is probably a “magic number”

 Can lead to tremendous debugging
problems when these numbers are
changed

 Instead, define constants to give
names to those numbers.

Layout for Control Structures

 Put control in one line when possible
 Single indentation level for what it

affects
xxxxxx

 xxxxx

 xxxxx

 Group each part of a complicated
condition on its own line

Layout of Individual
Statements

 White space can improve readability
− Spaces after commas

EvaluateEmployee(Name.First,EmployeeID,Date.Start,Date.End);

EvaluateEmployee(Name.First, EmployeeID, Date.Start, Date.End);

− Spaces between parts of conditions
if (((a<b)||(c>d))&&((a+b)<(c-d))&&((c-d)>2))

if (((a<b) || (c>d)) && ((a+b)<(c-d)) && ((c-d)>2))

if (((a<b) || (c>d)) &&

 ((a+b) < (c-d)) &&

 ((c-d) > 2))

Layout of Individual
Statements

 Line up related definitions or
assignments

StudentName = ProcessInputName();

StudentID = ProcessInputID();

StudentHometown = ProcessInputName();

 Don’t use more than one statement per
line.

− Likewise, define only one variable per line.
 Avoid side-effects (such as including

the ++ operator when doing something
else).

When a Line is Too Long

 Make it clear that the previous line is
not ending (e.g. end with an operator)

 Keep related parts of the line together
(don’t break single thought across line)

 Use indentation to highlight that there’s
a continuation

 Make it easy to find the end of the
continued line.

Layout of Routines

 Use standard indentation approach for
arguments.

 Use blank lines to separate parts of
routines or blocks of common actions

 Use comments (will return to) to identify
major breaks in conceptual flow

Layout of Files

 Clearly separate (multiple line breaks)
different routines in the same file

− Don’t want to accidentally “merge” or
“break” individual routines

− Sequence files in a logical manner
 In order of header file definition
 In alphabetical order
 Constructor, accessor, destructor, other

