
Communicating in Code:
Naming

315 Programming Studio

What’s the Purpose of 
Coding?

What’s the Purpose of 
Coding?

 To give the computer instructions?

What’s the Purpose of 
Coding?

• To give the computer instructions



What’s the Purpose of 
Coding?

• To give the computer instructions
 To demonstrate your skill?

What’s the Purpose of 
Coding?

• To give the computer instructions
• To demonstrate your skill

What’s the Purpose of 
Coding?

• To give the computer instructions
• To demonstrate your skill
• An effective way to express ideas of 

what you want the computer to do

What’s the Purpose of 
Coding?

• An effective way to express ideas of 
what you want the computer to do

 Communication!
− To the computer
− To yourself (later on)
− To others



What about Documentation?
 External documentation is very useful, 

but has its own problems
− Can be out of date/inconsistent with 

program
− Maintained separately (multiple files)
− Often for a different audience 

 developer vs. user

 Clearly written code can be more 
important than well-written 
documentation of that code

Communicating in Code

 Choosing good names
 Including appropriate comments
 Following good layout and style

 These are all critical to documentation, 
and with good naming, commenting, 
and layout, other documentation may 
be unnecessary!

Names

 We assign names throughout a 
program

 Give identity
 Imply behavior/purpose
 Provide recognition

What gets named?

 Variables
 Functions
 Types/classes
 Namespaces
 Macros
 Source Files



Choosing Names

 Sometimes there are naming 
conventions

− If you work at a company that has an 
agreed convention, follow it!

 But, there are several “wise” ideas to 
consider when choosing names.

Naming Considerations

Be sure it’s not a reserved name (Duh!)

Sometimes it’s easy to forget…

1. Make it informative

2. Keep it concise

3. Make it memorable

4. Make it pronounceable

Informative Names

 The amount of information a name needs 
depends on its scope – understand it when 
seen

 Use descriptive names for globals, short 
names for locals

 Large routines/loops need more descriptive 
names

s = 0;
for (WhichGroup=0; WhichGroup<num; WhichGroup+

+) {
s += G[WhichGroup].n();

}

Informative Names

 The amount of information a name needs 
depends on its scope – understand it when 
seen

 Use descriptive names for globals, short 
names for locals

 Large routines/loops need more descriptive 
names

nAnimals = 0;
for (i=0; i<NumAnimalGroups; i++) {

nAnimals += AnimalGroup[i].NumberInGroup();
}
 



Descriptive Names

 Names should convey what it 
represents or does, unless obvious 
from context

 Describe everything a routine does
− Print() vs. PrintAndCloseFile()

 Avoid meaningless or vague names
− HandleData(), PerformAction(), etc.

Descriptive Names

 Procedures: Active names
− Verb followed by noun
− AnotherStudent(s) vs. AddStudent(s)

 Functions different: give return value
− GetNumStudents() vs. numStudents()

 Booleans: Be clear what is returned
− checkEOF vs. isEOF

Consistent Names
 Key: Be Consistent! 

− nKids, numKids, num_kids, NumKids, nkids, 
Number_Kids, numberofkids

− Write1stObject(), WriteSecondObject(), 
write_third_object()

− averageSalary vs. salaryMinimum
 Use related names for related operations

− OpenFile(): CloseFile() vs. fclose()
− open/close, first/last, old/new, min/max, etc.

Name Length

 Tradeoff between description and 
visual space

 Moderate-length names tend to be best
− 8-20 characters

 If a glance at the code seems like it has 
lots of short or lots of long names, use 
caution!

 Scope plays a role
 Rarely-used functions might be longer



Other Random Naming 
Considerations

 Beware of “temp” variables
 Be careful of reusing variable names
 Be careful of overloading names
 Avoid intentional misspellings
 Consider pronunciation

Conventions

 Lots of conventions out there
 Conventions help convey information 

away from its definition
 Very useful for larger groups/programs
 Examples:

− Globals have initial capital letters
− Constants are in ALL CAPS
− Etc.

Common Naming 
Conventions

 Beginning/ending with a p if a pointer
 Starting with n for a number
 i, j are integer indices
 s is a string, c or ch are characters

Example:
Hungarian Naming 

Convention
 Base types:

− wn Window
− scr Screen Region
− fon Font
− ch Character
− pa Paragraph

 Eg: wnMain, scrUserWorkspace



Example:
Hungarian Naming 

Convention
 Prefixes

− a array
− c count
− d difference between two variables
− e element of array
− g global variable
− h handle
− i index into array

 e.g. iwnUserView = index into array of 
windows giving user views


