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Evolution of Memory and Prediction

Past, Present, and Future:

• Past: memory

• Present: reactive behavior

• Future: prediction, anticipation

→ How did these temporal functions emerge/evolve?

Simple to Complex Brains

(a) Sensor=Effector (b) Sensorimotor neuron → Effector

(c) Sensory, Motor, and interneuron (d) Complex circuit

Swanson (2003)

• From reactive to recurrent.

– Reactive: Input→Output

– Recurrent: Input modulating on-going internal activity

Time, in the Context of Neural

Networks

• Feedforward neural networks:

Have no memory of past input.

• Recurrent neural networks:

Have memory of past input.

e.g., Elman (1991)



Feedforward Networks
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Recurrent Networks
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Research Questions

Present FuturePast

Recollection Prediction

• [Q1] how did recollection (memory) evolve?

- From reactive (present) to recurrent (past).

• [Q2] how did prediction evolve?

- From recurrent (past) to predictive (future).

Approach

cross−over point
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CROSS−OVER

• Neuroevolution: evolve neural networks.



Part I: Recollection

Recollection in Feedforward

Networks?

Is it possible for a feedforward network to show memory

capacity?

• What would be a minimal augmentation?

• Idea: allow material interaction, dropping and

detecting of external markers.

Memory Task: Catch the Balls
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B1

speed = 1
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speed = 2

agent

5 distance sensors

θ

cf. Beer (2000); Ward and Ward (2006)

• Agent with range sensors move left/right.

• Must catch both falling balls.

• Memory needed when ball goes out of view.

Three Network Types Compared

Compare three different networks:

1. Feedforward

2. Recurrent

3. Dropper/Detector (with Feedforward net)



1. Feedforward Network

• Standard feedforward network.

2. Recurrent Network
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• Standard recurrent network (Elman 1991).

3. Feedfwd Net + Dropper/Detector
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Feedforward network plus:

• Extra output to drop markers.

• Extra sensors to detect the markers.

Results: Feedforward
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Feed-Forward Network

On average, only chance-level performance (50%).

• Always move to the fast ball.

• Randomly pick fast or slow ball and approach it.



Results: Recurrent vs. Dropper

 0

 20

 40

 60

 80

 100

Fast Right BallFast Left Ball

Ca
tc

h 
Pe

rfo
rm

an
ce

 (%
)

Recurrent Network
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Dropper Network

• No difference in performance between

dropper/detector net (right) and recurrent network

(left).

Part I Summary

• Reactive, feedforward networks can exhibit

memory-like behavior, when coupled with minimal

material interaction.

• Adding sensors and effectors could have been

easier than adjusting the neural architecture.

• Transition from external olfactory mechanism to

internal memory mechanism?

• Successfully extended to 2D foraging task.

Part II: Prediction

Largely based on Kwon and Choe (2008)

Emergence of Prediction in RNN?
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Can prediction emerge in internal state dynamics?

• Idea: Test if (1) internal state dynamics is

predictable in evolved recurrent nets, and (2) if that

correlates with performance.



Task: 2D Pole Balancing
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Anderson (1989)

• Standard 2D pole balancing problem.

• Keep pole upright, within square bounding region.

• Evolve recurrent neural network controllers.

Measuring Predictability
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• Train a simple feedforward network to predict the

internal state trajectories.

• Measure prediction error made by the network.

→ High vs. low internal state predictability (ISP)

Example Internal State Trajectories
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• Typical examples of high (top) and low (bottom) ISP.

• High ISP=predictable, Low ISP=unpredictable.

• Note: Both meet the same performance criterion!

Experiment: High vs. Low ISP

internal state

analysis

internal stateanalysis

All Controllers High−perform.
Controllers

Low ISP

High ISP
selection
process

evolutionary

1. Train networks to achieve same performance mark.

2. Analyze internal state predictability (ISP).

3. Select top (High ISP) and bottom (Low ISP) five, and

compare their performance in a harder task.



Results: Internal State Predictability

(ISP)

• Trained 130 pole balancing agents.

• Chose top 10 highest ISP agents and bottom 10 lowest ISP.

– high ISPs: µ = 95.61% and σ = 5.55%.

– low ISPs: µ = 31.74% and σ = 10.79%.

Performance and Int. State Dyn.
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Performance and Internal State Dynamics

High

Low

• Made the initial conditions in the 2D pole balancing

task harsher.

• Performance of high- and low-ISP groups compared.

• High-ISP group outperforms the low-ISP group in the

changed environment.

Behavioral Predictability
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Behavioral Predictability

High

Low

• Success of high-ISP group may simply be due to

simpler behavioral trajectory.

• However, predictability in behavioral predictability is

no different between high- and low-ISP groups.

Examples of cart x and y position

from high ISP
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• Behavioral trajectories of x and y positions show

complex trajectories.



Examples of cart x and y position

from low ISP
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• Behavioral trajectories of x and y positions show

complex trajectories.

Part II Summary

• Simulations show potential evolutionary advantage

of predictive internal dynamics.

• Predictive internal dynamics could be a precondition

for full-blown predictive capability.

Wrap-Up

Discussion

Memory (Internal)Memory (External)No memory

PastPresent Future

Predictive dynamics
Olfactory system? Hippocampus?

• From external memory to internalized memory (cf.

Rocha 1996).

• Analogous to olfactory vs. hippocampal function?

• Pheromones (external marker) vs. neuromodulators

(internal marker)?



Discussion (cont’d) & Future Work

zombieconscious

• Implications on the evolution of internal properties

invisible to the process evolution.

• Future work: (1) actual evolution from

dropper/detector net to recurrent net; (2) actual

evolution of predictor that can utilize the predictable

dynamics.

Conclusion

From reactive to contemplative to predictive:

• Recollection: External material interaction can be a

low-cost intermediate step toward recurrent

architecture.

• Prediction: Predictable internal state dynamics in

recurrent neural nets can have an evolutionary edge,

thus prediction can and will evolve.
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