Emergence of Past and Future in Evolution of Memory and Prediction

Evolving Neural Networks
Past, Present, and Future:

CSCE 633 Machine Learning (Spring 2014) e Past: memory

e Present: reactive behavior
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, o e Future: prediction, anticipation
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Texas A&M University — How did these temporal functions emerge/evolve?

* Joint work with Ji Ryang Chung and Jaerock Kwon

Simple to Complex Brains Time, in the Context of Neural
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e Feedforward neural networks:

(a) Sensor=Effector
Stimulus
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Have no memory of past input.

(c) Sensory, Motor, and interneuron (d) Complex circuit PY ReCU rrent neu ral networks:
Swanson (2003)

Have memory of past input.
e From reactive to recurrent.

— Reactive: Input—-Output e.g., Elman (1991)

— Recurrent: Input modulating on-going internal activity



Feedforward Networks Recurrent Networks
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- From recurrent (past) to predictive (future). e Neuroevolution: evolve neural networks.

e [Q1] how did recollection (memory) evolve?

- From reactive (present) to recurrent (past).

e [Q2] how did prediction evolve?



Recollection in Feedforward

Networks?

] Is it possible for a feedforward network to show memory
Part I: Recollection capacity?

e What would be a minimal augmentation?

e Idea: allow material interaction, dropping and
detecting of external markers.

Memory Task: Catch the Balls Three Network Types Compared
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cf. Beer (2000); Ward and Ward (2006)
e Agent with range sensors move left/right.
e Must catch both falling balls.

e Memory needed when ball goes out of view.



1. Feedforward Network 2. Recurrent Network
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e Standard feedforward network. e Standard recurrent network (Elman 1991).
3. Feedfwd Net + Dropper/Detector Results: Feedforward

Feed-Forward Network
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Feedforward network plus: e Always move to the fast ball.

e Extra output to drop markers. e Randomly pick fast or slow ball and approach it.

e Extra sensors to detect the markers.



Catch Performance (%)

Results: Recurrent vs. Dropper
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e No difference in performance between
dropper/detector net (right) and recurrent network
(left).

Part ll: Prediction

Largely based on Kwon and Choe (2008)

Part | Summary

o Reactive, feedforward networks can exhibit
memory-like behavior, when coupled with minimal

material interaction.

e Adding sensors and effectors could have been

easier than adjusting the neural architecture.

e Transition from external olfactory mechanism to

internal memory mechanism?

e Successfully extended to 2D foraging task.

Emergence of Prediction in RNN?
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Can prediction emerge in internal state dynamics?

e Idea: Test if (1) internal state dynamics is
predictable in evolved recurrent nets, and (2) if that
correlates with performance.



High ISP

Low ISP

Task: 2D Pole Balancing Measuring Predictability
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Anderson (1989)

e Train a simple feedforward network to predict the
e Standard 2D pole balancing problem. internal state trajectories.

e Keep pole upright, within square bounding region. e Measure prediction error made by the network.

e Evolve recurrent neural network controllers. — High vs. low internal state predictability (ISP)

Example Internal State Trajectories Experiment: High vs. Low ISP
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® Typical examples of high (top) and low (bottom) ISP. 1. Train networks to achieve same performance mark.
® High ISP=predictable, Low ISP=unpredictable. 2. Analyze internal state predictability (ISP).

) o
e Note: Both meet the same performance criterion! 3. Select top (High ISP) and bottom (Low ISP) five, and

compare their performance in a harder task.



Results: Internal State Predictability Performance and Int. State Dyn.

Performance and Internal State Dynamics
(ISP)
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o Trained 130 pole balancing agents. task harsher.

e Chose top 10 highest ISP agents and bottom 10 lowest ISP, e Performance of high- and low-ISP groups compared.
- high ISPs: ;© = 95.61% and o = 5.55%.

e High-ISP group outperforms the low-ISP group in the
- low ISPs: i1 = 31.74% and o = 10.79%.

changed environment.

Behavioral Predictability Examples of cart x and y position
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e Success of high-ISP group may simply be due to

simpler behavioral trajectory.

e However, predictability in behavioral predictability is * Behavioral trajectories of x and y positions show

no different between high- and low-ISP groups. complex trajectories.



Examples of cart x and y position

from low ISP

e Behavioral trajectories of x and y positions show

complex trajectories.

Wrap-Up

Part Il Summary

e Simulations show potential evolutionary advantage

of predictive internal dynamics.

e Predictive internal dynamics could be a precondition

for full-blown predictive capability.

Discussion
Olfactory system? Hippocampus?
No memory Memory (External) Memory (Internal) Predictive dynamics
e %ﬁ %H
Present Past Future

e From external memory to internalized memory (cf.
Rocha 1996).

e Analogous to olfactory vs. hippocampal function?

e Pheromones (external marker) vs. neuromodulators

(internal marker)?



Discussion (cont’d) & Future Work

zombie ‘

conscious ‘

e Implications on the evolution of internal properties
invisible to the process evolution.

e Future work: (1) actual evolution from
dropper/detector net to recurrent net; (2) actual
evolution of predictor that can utilize the predictable

dynamics.
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Conclusion

From reactive to contemplative to predictive:

e Recollection: External material interaction can be a
low-cost intermediate step toward recurrent

architecture.

e Prediction: Predictable internal state dynamics in
recurrent neural nets can have an evolutionary edge,

thus prediction can and will evolve.



