Genetic Algorithms

Mitchell chapter 9.

- Based loosely on simulated evolution.
- Hypotheses: described in bit strings (subject to interpretation in specific domains).
- Search: population of hypotheses, refined through mutation and crossover to increase fitness.
- Applications: optimization problems, learning the topology and parameters in neural networks, and many more.

Biological Evolution

Lamarck and others:

• Species "transmute" over time (inheritance of acquired trait)

Darwin and Wallace:

- Consistent, heritable variation among individuals in population
- Natural selection of the fittest

Mendel and genetics:

- A mechanism for inheriting traits
- genotype \rightarrow phenotype mapping

1

Motivation

- Mutation and crossover of hypotheses in the current population.
- Basically a *generate-and-test* beam search.
- Motivating factors:
 - Evolution is known to be successful.
 - GAs can search hypotheses containing complex interacting parts.
 - Easily parallelizable.

Genetic Algorithms

2

- Population: set of current hypotheses
- Fitness: predefined measure of success
- Elements of GA:

fitness test \rightarrow selection \rightarrow reproduction (mutation, crossover)

 $GA(Fitness, Fitness_threshold, p, r, m)$

- Initialize: $P \leftarrow p$ random hypotheses
- Evaluate: for each h in P, compute Fitness(h)
- While $[\max_h Fitness(h)] < Fitness_threshold$
 - 1. Select: Probabilistically select (1 r)p members of P to add to P_s .

$$\Pr(h_i) = \frac{Fitness(h_i)}{\sum_{j=1}^{p} Fitness(h_j)}$$

- 2. Crossover: Probabilistically select $\frac{r \cdot p}{2}$ pairs of hypotheses from P. For each pair, $\langle h_1, h_2 \rangle$, produce two offspring by applying the Crossover operator. Add all offspring to P_s .
- 3. *Mutate:* Invert a randomly selected bit in $m \cdot p$ random members of P_s
- 4. Update: $P \leftarrow P_s$
- 5. Evaluate: for each h in P, compute Fitness(h)
- Return the hypothesis from *P* that has the highest fitness.

5

Representing Hypotheses

Represent

$$Outlook = Overcast \lor Rain) \land (Wind = Strong)$$

by

Represent

IF
$$Wind = Strong$$
 THEN $PlayTennis = yes$

by

Outlook	Wind	PlayTennis
111	10	10
	e	

Selecting Most Fit Hypotheses

Fitness proportionate selection:

$$\Pr(h_i) = \frac{Fitness(h_i)}{\sum_{j=1}^{p} Fitness(h_j)}$$

... can lead to crowding

Tournament selection:

- Pick h_1, h_2 at random with uniform prob.
- With probability *p*, select the more fit.

Rank selection:

- Sort all hypotheses by fitness
- Probability of selection is proportional to rank

Example: GABIL [DeJong et al. 1993]

Learn disjunctive set of propositional rules, competitive with C4.5

Fitness:

 $Fitness(h) = (percent_correct(h))^2$

Representation:

IF $a_1 = T \land a_2 = F$ THEN $c = T$; IF $a_2 = T$ TH	$\operatorname{HEN} c = F$
---	----------------------------

represented by

a_1	a_2	c	a_1	a_2	c
10	01	1	11	10	0

Genetic operators: ???

- want variable length rule sets (as number of attributes can change)
- want only well-formed bitstring hypotheses

9

Lesson

- Picking a representation for the hypotheses can be tricky.
- Genetic operators need to preserve the semantics of the genetic encoding.

Crossover with Variable-Length Bitstrings

Start with

	a_1	a_2	c	a_1	a_2	c
$h_1:$	10	01	1	11	10	0
h_2 :	01	11	0	10	01	0

- 1. choose crossover points for h_1 , e.g., after bits 1, 8
- 2. now restrict points in h_2 to those that produce bitstrings with well-defined semantics, e.g., $\langle 1, 3 \rangle$, $\langle 1, 8 \rangle$, $\langle 6, 8 \rangle$.

if we choose $\langle 1, 3 \rangle$, result is

				a_1	a_2	c			
			$h_3:$	11	10	0			
	a_1	a_2	c	a_1	a_2	c	a_1	a_2	c
$h_4:$	00	01	1	11	11	0	10	01	0
				10					

Extensions to GABIL

Add new genetic operators, also applied probabilistically:

- 1. AddAlternative: generalize constraint on a_i by changing a 0 to 1
- 2. DropCondition: generalize constraint on a_i by changing every 0 to 1

And, add new field to bitstring to determine whether to allow these

a_1	a_2	c	a_1	a_2	c	AA	DC
01	11	0	10	01	0	1	0

So now the learning strategy also evolves. (Allowing this increased accuracy.)

GABIL Results

Performance of *GABIL* comparable to symbolic rule/tree learning methods *C4.5*, *ID5R*, *AQ14*

Average performance on a set of 12 synthetic problems:

- *GABIL* without AA and DC operators: 92.1% accuracy
- *GABIL* with AA and DC operators: 95.2% accuracy
- symbolic learning methods ranged from 91.2 to 96.6

13

Factors Influencing Change in m(s,t)

m(s,t) can change as t changes, due to the following factors:

- Selection: if individuals representing s get selected more often, $m(s,\cdot) \text{ will increase.}$
- Crossover
- Mutation

Schema theorem: gives E[m(s, t+1)].

Characterizing Evolution: Schemas

How to characterize evolution of population in GA?

Schema = string containing 0, 1, * ("don't care")

- Typical schema: 10**0*
- Instances of above schema: 101101, 100000, ...
- An instance of lenght 4, say 0010, can have 2^4 matching schemas.

Characterize population by number of instances representing each possible schema:

- m(s,t) = number of instances of schema s in pop at time t
- Want to estimate m(s,t+1) given m(s,t) and other factors.

14

Influence of Selection

- $\bar{f}(t)$ = average fitness of pop. at time t
- $\bullet \ \ m(s,t) = \text{instances of schema } s \text{ in pop at time } t$
- $\hat{u}(s,t) =$ average fitness of instances of s at time t
- $h \in s \cap p_t$: instances of schema s in the population at time t

Probability of selecting h in one selection step

$$Pr(h) = \frac{f(h)}{\sum_{i=1}^{n} f(h_i)}$$
$$= \frac{f(h)}{n\bar{f}(t)}$$

Mean fitness of instances of s at time t:

$$\hat{u}(s,t) = \frac{\sum_{h \in s \cap p_t} f(h)}{m(s,t)}$$

Influence of Selection

Probability of selecting an instance of s in one step

$$\Pr(h \in s) = \sum_{h \in s \cap p_t} \frac{f(h)}{n\bar{f}(t)}$$
$$= \frac{\hat{u}(s,t)}{n\bar{f}(t)} m(s,t)$$

Expected number of instances of s after n selections

$$E[m(s,t+1)] = \frac{\hat{u}(s,t)}{\bar{f}(t)}m(s,t)$$

Genetic Programming

17

Population of programs represented by trees

$$E[m(s,t+1)] \ge \frac{\hat{u}(s,t)}{\bar{f}(t)}m(s,t)\left(1 - p_c \frac{d(s)}{l-1}\right)(1 - p_m)^{o(s)}$$

- m(s,t) =instances of schema s in pop at time t
- $\bar{f}(t) = \text{average fitness of pop. at time } t$
- $\hat{u}(s,t) =$ ave. fitness of instances of s at time t
- $p_c = \text{probability of single point crossover operator}$
- $p_m = \text{probability of mutation operator}$
- l =length of single bit strings
- o(s) number of defined (non "*") bits in s
- d(s) = distance between leftmost, rightmost defined bits in s
 - 18

Crossover: Swap whole subtrees

Block Problem

n e s r v u I a i

Goal: spell UNIVERSAL

Terminals:

- CS ("current stack") = name of the top block on stack, or *F*.
- TB ("top correct block") = name of topmost correct block on stack
- NN ("next necessary") = name of the next block needed above TB in the stack

21

Learned Program

Trained to fit 166 test problems

Using population of 300 programs, found this after 10 generations:

(EQ (DU (MT CS)(NOT CS)) (DU (MS NN)(NOT NN)))

Primitive Functions

- (MS *x*): ("move to stack"), if block *x* is on the table, moves *x* to the top of the stack and returns the value *T*. Otherwise, does nothing and returns the value *F*.
- (MT *x*): ("move to table"), if block *x* is somewhere in the stack, moves the block at the top of the stack to the table and returns the value *T*. Otherwise, returns *F*.
- (EQ *x y*): ("equal"), returns *T* if *x* equals *y*, and returns *F* otherwise.
- (NOT x): returns T if x = F, else returns F
- (DU x y): ("do until") executes the expression x repeatedly until expression y returns the value T

22

Biological Evolution

Lamarck (19th century)

- Believed individual genetic makeup was altered by lifetime experience
- But current evidence contradicts this view

What is the impact of individual learning on population evolution?

Baldwin Effect

Baldwin Effect

Assume

- Individual learning has no direct influence on individual DNA
- But ability to learn reduces need to "hard wire" traits in DNA

Then

- Ability of individuals to learn will support more diverse gene pool
 - Because learning allows individuals with various "hard wired" traits to be successful
- More diverse gene pool will support faster evolution of gene pool
- ightarrow individual learning (indirectly) increases rate of evolution

25

Computer Experiments on Baldwin Effect

[Hinton and Nowlan, 1987]

Evolve simple neural networks:

- Some network weights fixed during lifetime, others trainable
- Genetic makeup determines which are fixed, and their weight values

Results:

- With no individual learning, population failed to improve over time
- When individual learning allowed
 - Early generations: population contained many individuals with many trainable weights
 - Later generations: higher fitness, while number of trainable weights decreased 27

Plausible example:

- 1. New predator appears in environment
- 2. Individuals who can learn (to avoid it) will be selected
- Increase in learning individuals will support more diverse gene pool
- 4. resulting in faster evolution
- 5. possibly resulting in new non-learned traits such as instintive fear of predator

26

Other Considerations

- Coevolution: escalating effect or complementary dependence (insects and flowering plants) between two or more species.
- Cultural transmission: memes vs. genes.

Summary: Evolutionary Learning

- Conduct randomized, parallel, hill-climbing search through H
- Approach learning as optimization problem (optimize fitness)
- Nice feature: evaluation of Fitness can be very indirect
 - consider learning rule set for multistep decision making
 - no issue of assigning credit/blame to individual steps

29