
Genetic Algorithms

Mitchell chapter 9.

• Based loosely on simulated evolution.

• Hypotheses: described in bit strings (subject to interpretation in

specific domains).

• Search: population of hypotheses, refined through mutation and

crossover to increase fitness.

• Applications: optimization problems, learning the topology and

parameters in neural networks, and many more.

1

Biological Evolution

Lamarck and others:

• Species “transmute” over time (inheritance of acquired trait)

Darwin and Wallace:

• Consistent, heritable variation among individuals in population

• Natural selection of the fittest

Mendel and genetics:

• A mechanism for inheriting traits

• genotype→ phenotype mapping

2

Motivation

• Mutation and crossover of hypotheses in the current population.

• Basically a generate-and-test beam search.

• Motivating factors:

– Evolution is known to be successful.

– GAs can search hypotheses containing complex interacting

parts.

– Easily parallelizable.

3

Genetic Algorithms

• Population: set of current hypotheses

• Fitness: predefined measure of success

• Elements of GA:

fitness test→ selection→ reproduction (mutation, crossover)

4

GA(Fitness, F itness threshold, p, r,m)

• Initialize: P ← p random hypotheses

• Evaluate: for each h in P , compute Fitness(h)

• While [maxh Fitness(h)] < Fitness threshold

1. Select: Probabilistically select (1− r)p members of P to add to Ps .

Pr(hi) =
Fitness(hi)Pp

j=1 Fitness(hj)

2. Crossover: Probabilistically select r·p
2 pairs of hypotheses from P .

For each pair, 〈h1, h2〉, produce two offspring by applying the

Crossover operator. Add all offspring to Ps .

3. Mutate: Invert a randomly selected bit in m · p random members of

Ps

4. Update: P ← Ps

5. Evaluate: for each h in P , compute Fitness(h)

• Return the hypothesis from P that has the highest fitness.
5

Representing Hypotheses

Represent

(Outlook = Overcast ∨Rain) ∧ (Wind = Strong)

by

Outlook Wind

011 10

Represent

IF Wind = Strong THEN PlayTennis = yes

by

Outlook Wind P layTennis

111 10 10

6

Genetic Operators

Single-point crossover:

11101001000

00001010101

11111000000
11101010101

Initial strings Crossover Mask Offspring

Two-point crossover:

11101001000

00001010101

00111110000
11001011000

10011010011

Uniform crossover:

Point mutation:

11101001000

00001010101

10001000100

11101001000 11101011000

00101000101

00001001000

01101011001

7

Selecting Most Fit Hypotheses

Fitness proportionate selection:

Pr(hi) =
Fitness(hi)Pp

j=1 Fitness(hj)

... can lead to crowding

Tournament selection:

• Pick h1, h2 at random with uniform prob.

• With probability p, select the more fit.

Rank selection:

• Sort all hypotheses by fitness

• Probability of selection is proportional to rank

8

Example: GABIL [DeJong et al. 1993]

Learn disjunctive set of propositional rules, competitive with C4.5

Fitness:

Fitness(h) = (percent correct(h))
2

Representation:

IF a1 = T ∧ a2 = F THEN c = T ; IF a2 = T THEN c = F

represented by

a1 a2 c a1 a2 c

10 01 1 11 10 0

Genetic operators: ???

• want variable length rule sets (as number of attributes can change)

• want only well-formed bitstring hypotheses

9

Crossover with Variable-Length Bitstrings

Start with

a1 a2 c a1 a2 c

h1 : 10 01 1 11 10 0

h2 : 01 11 0 10 01 0

1. choose crossover points for h1 , e.g., after bits 1, 8

2. now restrict points in h2 to those that produce bitstrings with well-defined

semantics, e.g., 〈1, 3〉, 〈1, 8〉, 〈6, 8〉.
if we choose 〈1, 3〉, result is

a1 a2 c

h3 : 11 10 0

a1 a2 c a1 a2 c a1 a2 c

h4 : 00 01 1 11 11 0 10 01 0

10

Lesson

• Picking a representation for the hypotheses can be tricky.

• Genetic operators need to preserve the semantics of the genetic

encoding.

11

Extensions to GABIL

Add new genetic operators, also applied probabilistically:

1. AddAlternative: generalize constraint on ai by changing a 0 to 1

2. DropCondition: generalize constraint on ai by changing every 0

to 1

And, add new field to bitstring to determine whether to allow these

a1 a2 c a1 a2 c AA DC

01 11 0 10 01 0 1 0

So now the learning strategy also evolves. (Allowing this increased

accuracy.)

12

GABIL Results

Performance of GABIL comparable to symbolic rule/tree learning

methods C4.5, ID5R, AQ14

Average performance on a set of 12 synthetic problems:

• GABIL without AA and DC operators: 92.1% accuracy

• GABIL with AA and DC operators: 95.2% accuracy

• symbolic learning methods ranged from 91.2 to 96.6

13

Characterizing Evolution: Schemas

How to characterize evolution of population in GA?

Schema = string containing 0, 1, * (“don’t care”)

• Typical schema: 10**0*

• Instances of above schema: 101101, 100000, ...

• An instance of lenght 4, say 0010, can have 24 matching

schemas.

Characterize population by number of instances representing each

possible schema:

• m(s, t) = number of instances of schema s in pop at time t

• Want to estimate m(s, t + 1) given m(s, t) and other factors.

14

Factors Influencing Change in m(s, t)

m(s, t) can change as t changes, due to the following factors:

• Selection: if individuals representing s get selected more often,

m(s, ·) will increase.

• Crossover

• Mutation

Schema theorem: gives E[m(s, t + 1)].

15

Influence of Selection

• f̄(t) = average fitness of pop. at time t

• m(s, t) = instances of schema s in pop at time t

• û(s, t) = average fitness of instances of s at time t

• h ∈ s ∩ pt : instances of schema s in the population at time t

Probability of selecting h in one selection step

Pr(h) =
f(h)Pn

i=1 f(hi)

=
f(h)

nf̄(t)

Mean fitness of instances of s at time t:

û(s, t) =

P
h∈s∩pt f(h)

m(s, t)

16

Influence of Selection

Probabilty of selecting an instance of s in one step

Pr(h ∈ s) =
X

h∈s∩pt

f(h)

nf̄(t)

=
û(s, t)

nf̄(t)
m(s, t)

Expected number of instances of s after n selections

E[m(s, t + 1)] =
û(s, t)

f̄(t)
m(s, t)

17

Schema Theorem

E[m(s, t+1)] ≥ û(s, t)

f̄(t)
m(s, t)

„
1− pc

d(s)

l − 1

«
(1−pm)o(s)

• m(s, t) = instances of schema s in pop at time t

• f̄(t) = average fitness of pop. at time t

• û(s, t) = ave. fitness of instances of s at time t

• pc = probability of single point crossover operator

• pm = probability of mutation operator

• l = length of single bit strings

• o(s) number of defined (non “*”) bits in s

• d(s) = distance between leftmost, rightmost defined bits in s

18

Genetic Programming

Population of programs represented by trees

sin(x) +
p

x2 + y

^

sin

x

y

2

+

x

+

19

Crossover: Swap whole subtrees

^sin

x

y

2 +

x

+

^

sin

x

y

2

+

x

+

sin

x

y

+

x

+

^sin

x

y

2

+x

+

^

2

20

Block Problem

u iv a

n
e

r
s

l

Goal: spell UNIVERSAL

Terminals:

• CS (“current stack”) = name of the top block on stack, or F .

• TB (“top correct block”) = name of topmost correct block on stack

• NN (“next necessary”) = name of the next block needed above TB

in the stack

21

Primitive Functions

• (MS x): (“move to stack”), if block x is on the table, moves x to

the top of the stack and returns the value T . Otherwise, does

nothing and returns the value F .

• (MT x): (“move to table”), if block x is somewhere in the stack,

moves the block at the top of the stack to the table and returns the

value T . Otherwise, returns F .

• (EQ x y): (“equal”), returns T if x equals y, and returns F

otherwise.

• (NOT x): returns T if x = F , else returns F

• (DU x y): (“do until”) executes the expression x repeatedly until

expression y returns the value T

22

Learned Program

Trained to fit 166 test problems

Using population of 300 programs, found this after 10 generations:

(EQ (DU (MT CS)(NOT CS)) (DU (MS NN)(NOT NN)))

23

Biological Evolution

Lamarck (19th century)

• Believed individual genetic makeup was altered by lifetime

experience

• But current evidence contradicts this view

What is the impact of individual learning on population evolution?

24

Baldwin Effect

Assume

• Individual learning has no direct influence on individual DNA

• But ability to learn reduces need to “hard wire” traits in DNA

Then

• Ability of individuals to learn will support more diverse gene pool

– Because learning allows individuals with various “hard wired”

traits to be successful

• More diverse gene pool will support faster evolution of gene pool

→ individual learning (indirectly) increases rate of evolution

25

Baldwin Effect

Plausible example:

1. New predator appears in environment

2. Individuals who can learn (to avoid it) will be selected

3. Increase in learning individuals will support more diverse gene

pool

4. resulting in faster evolution

5. possibly resulting in new non-learned traits such as instintive fear

of predator

26

Computer Experiments on Baldwin Effect
[Hinton and Nowlan, 1987]

Evolve simple neural networks:

• Some network weights fixed during lifetime, others trainable

• Genetic makeup determines which are fixed, and their weight

values

Results:

• With no individual learning, population failed to improve over time

• When individual learning allowed

– Early generations: population contained many individuals with

many trainable weights

– Later generations: higher fitness, while number of trainable

weights decreased 27

Other Considerations

• Coevolution: escalating effect or complementary dependence

(insects and flowering plants) between two or more species.

• Cultural transmission: memes vs. genes.

28

Summary: Evolutionary Learning

• Conduct randomized, parallel, hill-climbing search through H

• Approach learning as optimization problem (optimize fitness)

• Nice feature: evaluation of Fitness can be very indirect

– consider learning rule set for multistep decision making

– no issue of assigning credit/blame to individual steps

29

