Neural Networks

- Threshold units
- Gradient descent
- Multilayer networks
- Backpropagation
- Hidden layer representations
- Example: Face Recognition
- Advanced topics
- And, more

Blue slides: from Mitchell. Turquoise slides: from Alpaydin

Neural Networks

- Networks of processing units (neurons) with connections (synapses) between them
- Large number of neurons: 10^{10}
- Large connectitivity: 10^{5}
- Parallel processing
- Distributed computation/memory
- Robust to noise, failures

Biological Neurons and Networks

- Neuron switching time $\sim .001$ second (1 ms)
- Number of neurons $\sim 10^{10}$
- Connections per neuron $\sim 10^{4-5}$
- Scene recognition time $\sim .1$ second (100 ms)
- 100 processing steps doesn't seem like enough $[\rightarrow$] much parallel computation

Artificial Neural Networks

- Many neuron-like threshold switching units (real-valued)
- Many weighted interconnections among units
- Highly parallel, distributed process
- Emphasis on tuning weights automatically: New learning algorithms, new optimization techniques, new learning principles.

When to Consider Neural Networks

- Input is high-dimensional discrete or real-valued (e.g. raw sensor input)
- Output is discrete or real valued
- Output is a vector of values
- Possibly noisy data
- Long training time (may need occasional, extensive retraining)
- Form of target function is unknown
- Fast evaluation of learned target function
- Human readability of result is unimportant

Biologically Motivated (or Accurate) Neural Networks

- Spiking neurons
- Complex morphological models
- Detailed dynamical models
- Connectivity either based on or trained to mimic biology
- Focus on modeling network/neural/subneural processes
- Focus on natural principles of neural computation
- Different forms of learning: spike-timing-dependent plasticity, covariance learning, short-term and long-term plasticity, etc.

4

Example Applications (more later)

(a) ALVINN

(b) http://yann.lecun.com

Examples:

- Speech synthesis
- Handwritten character recognition (from yann.lecun.com).
- Financial prediction, Transaction fraud detection (Big issue lately)
- Driving a car on the highway

Perceptrons

$o\left(x_{1}, \ldots, x_{n}\right)=\left\{\begin{aligned} 1 & \text { if } w_{0}+w_{1} x_{1}+\cdots+w_{n} x_{n}>0 \\ -1 & \text { otherwise } .\end{aligned}\right.$
Sometimes we'll use simpler vector notation:

$$
o(\vec{x})=\left\{\begin{aligned}
1 & \text { if } \vec{w} \cdot \vec{x}>0 \\
-1 & \text { otherwise }
\end{aligned}\right.
$$

Boolean Logic Gates with Perceptron Units

Russel \& Norvig
input: $\{-1,1\}$

- Perceptrons can represent basic boolean functions.
- Thus, a network of perceptron units can compute any Boolean function.

What about XOR or EQUIV?

Hypothesis Space of Perceptrons

- The tunable parameters are the weights $w_{0}, w_{1}, \ldots, w_{n}$, so the space H of candidate hypotheses is the set of all possible combination of real-valued weight vectors:

$$
H=\left\{\vec{w} \mid \vec{w} \in \mathcal{R}^{(n+1)}\right\}
$$

8

Perceptrons can only represent linearly separable functions.

- Output of the perceptron:

$$
\begin{gathered}
W_{0} \times I_{0}+W_{1} \times I_{1}-t>0, \text { then output is } 1 \\
W_{0} \times I_{0}+W_{1} \times I_{1}-t \leq 0, \text { then output is }-1
\end{gathered}
$$

The hypothesis space is a collection of separating lines.

Geometric Interpretation

- Rearranging

$$
W_{0} \times I_{0}+W_{1} \times I_{1}-t>0, \text { then output is } 1
$$

we get (if $W_{1}>0$)

$$
I_{1}>\frac{-W_{0}}{W_{1}} \times I_{0}+\frac{t}{W_{1}}
$$

where points above the line, the output is 1 , and -1 for those below the line. Compare with

$$
y=\frac{-W_{0}}{W 1^{1}} \times x+\frac{t}{W_{1}}
$$

Limitation of Perceptrons

- Only functions where the -1 points and 1 points are clearly separable can be represented by perceptrons.
- The geometric interpretation is generalizable to functions of n arguments, i.e. perceptron with n inputs plus one threshold (or bias) unit.

The Role of the Bias

- Without the bias $(t=0)$, learning is limited to adjustment of the slope of the separating line passing through the origin.
- Three example lines with different weights are shown.

12

http://mathworld.wolfram.com/Plane.html

- $\vec{n}=(a, b, c), \vec{x}=(x, y, z), \overrightarrow{x_{0}}=\left(x_{0}, y_{0}, z_{0}\right)$.
- Equation of a plane: $\vec{n} \cdot\left(\vec{x}-\overrightarrow{x_{0}}\right)=0$
- In short, $a x+b y+c z+d=0$, where a, b, c can serve as the weight, and $d=-\vec{n} \cdot \overrightarrow{x_{0}}$ as the bias.
- For n-D input space, the decision boundary becomes a $(n-1)$-D hyperplane (1-D less than the input space).

- For functions that take integer or real values as arguments and output either -1 or 1.
- Left: linearly separable (i.e., can draw a straight line between the classes).
- Right: not linearly separable (i.e., perceptrons cannot represent such a function)

Linear Separability (cont'd)

XOR in Detail

$\#$	I_{0}	I_{1}	XOR
1	0	0	-1
2	0	1	
1	0		
4	1		

[^0]

- The weights do not have to be calculated manually.
- We can train the network with (input,output) pair according to the following weight update rule:

$$
w_{i} \longleftarrow w_{i}+\eta(t-o) x_{i}
$$

where η is the learning rate parameter.

- Proven to converge if input set is linearly separable and η is small.

Learning in Perceptrons (Cont'd)

$$
w_{i} \leftarrow w_{i}+\eta(t-o) x_{i}
$$

- When $t=o$, weight stays.
- When $t=1$ and $o=-1$, change in weight is:

$$
\eta(1-(-1)) x_{i}>0
$$

if x_{i} are all positive. Thus $\vec{w} \cdot \vec{x}$ will increase, thus eventually, output o will turn to 1 .

- When $t=-1$ and $o=1$, change in weight is:

$$
\eta(-1-1) x_{i}<0
$$

if x_{i} are all positive. Thus $\vec{w} \cdot \vec{x}$ will decrease, thus eventually, output o will turn to -1 .

19

Another Learning Rule: Delta Rule

- The perceptron rule cannot deal with noisy data.
- The delta rule will find an approximate solution even when input set is not linearly separable.
- Use linear unit without the step function: $o(\vec{x})=\vec{w} \cdot \vec{x}$.
- Want to reduce the error by adjusting \vec{w} :

$$
E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D}\left(t_{d}-o_{d}\right)^{2}
$$

Learning in Perceptron: Another Look

- The perceptron on the left can be represented as a line shown on the right (why? see page 14).
- Learning can be thought of as adjustment of \vec{w} turning toward the input vector $\vec{x}: \quad \vec{w} \longleftarrow \vec{w}+\eta(t-o) \vec{x}$.
- Adjustment of the bias t moves the line closer or away from the origin.

20

- Want to minimize by adjusting
$\vec{w}: \quad E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D}\left(t_{d}-o_{d}\right)^{2}$
- Note: the error surface is defined by the training data D. A different data set will give a different surface.
- $E\left(w_{0}, w_{1}\right)$ is the error function above, and we want to change $\left(w_{0}, w_{1}\right)$ to position under a low E.

Gradient Descent (Cont’d)

Gradient

$$
\nabla E[\vec{w}] \equiv\left[\frac{\partial E}{\partial w_{0}}, \frac{\partial E}{\partial w_{1}}, \cdots \frac{\partial E}{\partial w_{n}}\right]
$$

Training rule:

$$
\Delta \vec{w}=-\eta \nabla E[\vec{w}]
$$

i.e.,

$$
\Delta w_{i}=-\eta \frac{\partial E}{\partial w_{i}}
$$

Gradient Descent (Cont'd)

$$
\begin{aligned}
\frac{\partial E}{\partial w_{i}} & =\frac{\partial}{\partial w_{i}} \frac{1}{2} \sum_{d}\left(t_{d}-o_{d}\right)^{2} \\
& =\frac{1}{2} \sum_{d} \frac{\partial}{\partial w_{i}}\left(t_{d}-o_{d}\right)^{2} \\
& =\frac{1}{2} \sum_{d} 2\left(t_{d}-o_{d}\right) \frac{\partial}{\partial w_{i}}\left(t_{d}-o_{d}\right) \\
& =\sum_{d}\left(t_{d}-o_{d}\right) \frac{\partial}{\partial w_{i}}\left(t_{d}-\vec{w} \cdot \overrightarrow{x_{d}}\right) \\
\frac{\partial E}{\partial w_{i}} & =\sum_{d}\left(t_{d}-o_{d}\right)\left(-x_{i, d}\right)
\end{aligned}
$$

Since we want $\Delta w_{i}=-\eta \frac{\partial E}{\partial w_{i}}, \Delta w_{i}=\eta \sum_{d}\left(t_{d}-o_{d}\right) x_{i, d}$.

Gradient Descent (Example)

- Gradient points in the maximum increasing direction.
- Gradient is prependicular to the level curve (uphill direction).
- $E\left(w_{0}, w_{1}\right)$ is the error function above, so $\nabla E=\left(\frac{\partial E}{\partial w_{0}}, \frac{\partial E}{\partial w_{1}}\right)$, a vector on a 2D plane.

Gradient Descent: Summary

Gradient-Descent (training_examples, η)
Each training example is a pair of the form $\langle\vec{x}, t\rangle$, where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05).

- Initialize each w_{i} to some small random value
- Until the termination condition is met, Do
- Initialize each Δw_{i} to zero.
- For each $\langle\vec{x}, t\rangle$ in training_examples, Do
* Input the instance \vec{x} to the unit and compute the output o
* For each linear unit weight w_{i}, Do

$$
\Delta w_{i} \leftarrow \Delta w_{i}+\eta(t-o) x_{i}
$$

- For each linear unit weight w_{i}, Do

$$
w_{i} \leftarrow w_{i}+\Delta w_{i}
$$

Gradient Descent Properties

Gradient descent is effective in searching through a large or infinite H :

- H contains continuously parameterized hypotheses, and
- the error can be differentiated wrt the parameters.

Limitations:

- convergence can be slow, and
- finds local minima (global minumum not guaranteed).

Stochastic Approximation to Grad. Desc.

Avoiding local minima: Incremental gradient descent, or stochastic gradient descent.

- Instead of weight update based on all input in D, immediately update weights after each input example:

$$
\Delta w_{i}=\eta(t-o) x_{i}
$$

instead of

$$
\Delta w_{i}=\eta \sum_{d \in D}\left(t_{d}-o_{d}\right) x_{i}
$$

- Can be seen as minimizing error function

$$
E_{d}(\vec{w})=\frac{1}{2}\left(t_{d}-o_{d}\right)^{2}
$$

Summary

Perceptron training rule guaranteed to succeed if

- Training examples are linearly separable
- Sufficiently small learning rate η

Linear unit training rule using gradient descent

- Asymptotic convergence to hypothesis with minimum squared error
- Given sufficiently small learning rate η
- Even when training data contains noise
- Even when training data not separable by H

Exercise: Implementing the Perceptron

- It is fairly easy to implement a perceptron.
- You can implement it in any programming language: C/C++, etc.
- Look for examples on the web, and JAVA applet demos.

Multilayer Networks and Backpropagation

- Nonlinear decision surfaces.

(a) One output

(b) Two hidden, one output
- Another example: XOR

Multilayer Networks

- Differentiable threshold unit: sigmoid

$$
\begin{aligned}
& \qquad \sigma(y)=\frac{1}{1+\exp (-y)} \\
& \text { Interesting property: } \frac{d \sigma(y)}{d y}=\sigma(y)(1-\sigma(y))
\end{aligned}
$$

- Output:

$$
o=\sigma(\vec{w} \cdot \vec{x})
$$

- Other functions:

$$
\tanh (y)=\frac{\exp (-2 y)-1}{\exp (-2 y)+1}
$$

32

Error Gradient for a Sigmoid Unit

$$
\begin{aligned}
\frac{\partial E}{\partial w_{i}} & =\frac{\partial}{\partial w_{i}} \frac{1}{2} \sum_{d \in D}\left(t_{d}-o_{d}\right)^{2} \\
& =\frac{1}{2} \sum_{d} \frac{\partial}{\partial w_{i}}\left(t_{d}-o_{d}\right)^{2} \\
& =\frac{1}{2} \sum_{d} 2\left(t_{d}-o_{d}\right) \frac{\partial}{\partial w_{i}}\left(t_{d}-o_{d}\right) \\
& =\sum_{d}\left(t_{d}-o_{d}\right)\left(-\frac{\partial o_{d}}{\partial w_{i}}\right) \\
& =-\sum_{d}\left(t_{d}-o_{d}\right) \frac{\partial o_{d}}{\partial n e t_{d}} \frac{\partial n e t_{d}}{\partial w_{i}}
\end{aligned}
$$

Error Gradient for a Sigmoid Unit

From the previous page:

$$
\frac{\partial E}{\partial w_{i}}=-\sum_{d}\left(t_{d}-o_{d}\right) \frac{\partial o_{d}}{\partial n e t_{d}} \frac{\partial n e t_{d}}{\partial w_{i}}
$$

But we know:

$$
\begin{gathered}
\frac{\partial o_{d}}{\partial n e t_{d}}=\frac{\partial \sigma\left(\text { net }_{d}\right)}{\partial n e t_{d}}=o_{d}\left(1-o_{d}\right) \\
\frac{\partial n e t_{d}}{\partial w_{i}}=\frac{\partial\left(\vec{w} \cdot \vec{x}_{d}\right)}{\partial w_{i}}=x_{i, d}
\end{gathered}
$$

So:

$$
\frac{\partial E}{\partial w_{i}}=-\sum_{d \in D}\left(t_{d}-o_{d}\right) o_{d}\left(1-o_{d}\right) x_{i, d}
$$

35

Backpropagation Algorithm

Initialize all weights to small random numbers.
Until satisfied, Do

- For each training example, Do

1. Input the training example to the network and compute the network outputs
2. For each output unit k
$\delta_{k} \leftarrow o_{k}\left(1-o_{k}\right)\left(t_{k}-o_{k}\right)$
3. For each hidden unit h

$$
\delta_{h} \leftarrow o_{h}\left(1-o_{h}\right) \sum_{k \in \text { outputs }} w_{k h} \delta_{k}
$$

4. Update each network weight $w_{i, j}$
$w_{j i} \leftarrow w_{j i}+\Delta w_{j i}$ where
$\Delta w_{j i}=\eta \delta_{j} x_{i}$.
Note: $w_{j i}$ is the weight from i to j (i.e., $w_{j \leftarrow i}$).

36

Derivation of Δw

- Want to update weight as:

$$
\Delta w_{j i}=-\eta \frac{\partial E_{d}}{\partial w_{j i}}
$$

where error is defined as:

$$
E_{d}(\vec{w}) \equiv \frac{1}{2} \sum_{k \in \text { outputs }}\left(t_{k}-o_{k}\right)^{2}
$$

- Given net $_{j}=\sum_{j} w_{j i} x_{i}$,

$$
\frac{\partial E_{d}}{\partial w_{j i}}=\frac{\partial E_{d}}{\partial n e t_{j}} \frac{\partial n e t_{j}}{\partial w_{j i}}
$$

- Different formula for output and hidden.

Derivation of Δw : Output Unit Weights

From the previous page, $\frac{\partial E_{d}}{\partial w_{j i}}=\frac{\partial E_{d}}{\partial n e t_{j}} \frac{\partial n e t_{j}}{\partial w_{j i}}$

- First, calculate $\frac{\partial E_{d}}{\partial n e t_{j}}$:

$$
\begin{aligned}
& \frac{\partial E_{d}}{\partial n e t_{j}}=\frac{\partial E_{d}}{\partial o_{j}} \frac{\partial o_{j}}{\partial n e t_{j}} \\
\frac{\partial E_{d}}{\partial o_{j}}= & \frac{\partial}{\partial o_{j}} \frac{1}{2} \sum_{k \in o u t p u t s}\left(t_{k}-o_{k}\right)^{2} \\
= & \frac{\partial}{\partial o_{j}} \frac{1}{2}\left(t_{j}-o_{j}\right)^{2} \\
= & 2 \frac{1}{2}\left(t_{j}-o_{j}\right) \frac{\partial\left(t_{j}-o_{j}\right)}{\partial o_{j}} \\
= & -\left(t_{j}-o_{j}\right)
\end{aligned}
$$

Derivation of Δw : Output Unit Weights

From the previous page:

$$
\begin{gathered}
\frac{\partial E_{d}}{\partial n e t_{j}}=\frac{\partial E_{d}}{\partial o_{j}} \frac{\partial o_{j}}{\partial n e t_{j}}=-\left(t_{j}-o_{j}\right) o_{j}\left(1-o_{j}\right) . \\
\text { Since } \frac{\partial n e t_{j}}{\partial w_{j i}}=\frac{\partial \sum_{k} w_{j k} x_{k}}{\partial w_{j i}}=x_{i} \\
\frac{\partial E_{d}}{\partial w_{j i}}=\underbrace{\frac{\partial E_{d}}{\partial n e t_{j}} \frac{\partial n e t_{j}}{\partial w_{j i}}}_{\delta_{j}=\operatorname{error} \times \sigma^{\prime}(n e t)} \\
=-\underbrace{\left(t_{j}-o_{j}\right) o_{j}\left(1-o_{j}\right)}_{i n p u t}
\end{gathered}
$$

Derivation of Δw : Output Unit Weights

From the previous page,
$\frac{\partial E_{d}}{\partial n e t_{j}}=\frac{\partial E_{d}}{\partial o_{j}} \frac{\partial o_{j}}{\partial n e t_{j}}=-\left(t_{j}-o_{j}\right) \frac{\partial o_{j}}{\partial n e t_{j}}:$

- Next, calculate $\frac{\partial o_{j}}{\partial n e t_{j}}$: Since $o_{j}=\sigma\left(\right.$ net $\left._{j}\right)$, and $\sigma^{\prime}\left(\right.$ net $\left._{j}\right)=o_{j}\left(1-o_{j}\right)$,

$$
\frac{\partial o_{j}}{\partial n e t_{j}}=o_{j}\left(1-o_{j}\right)
$$

Putting everything together,

$$
\frac{\partial E_{d}}{\partial n e t_{j}}=\frac{\partial E_{d}}{\partial o_{j}} \frac{\partial o_{j}}{\partial n e t_{j}}=-\left(t_{j}-o_{j}\right) o_{j}\left(1-o_{j}\right)
$$

40

Derivation of Δw : Hidden Unit Weights

Start with $\frac{\partial E_{d}}{\partial w_{j i}}=\frac{\partial E_{d}}{\partial n e t_{j}} \frac{\partial n e t_{j}}{\partial w_{j i}}=\frac{\partial E_{d}}{\partial n e t_{j}} x_{i}$:

$$
\begin{align*}
& \frac{\partial E_{d}}{\partial n e t_{j}}=\sum_{\left.k \in \text { Downstream }^{\prime} j\right)} \frac{\partial E_{d}}{\partial \text { net }_{k}} \frac{\partial n e t_{k}}{\partial n e t_{j}} \\
& =\sum_{k \in \text { Downstream }^{\prime}(j)}-\delta_{k} \frac{\text { Dnet }_{k}}{\partial \text { net }_{j}} \\
& =\sum_{k \in \text { Downstream }^{(j)}}-\delta_{k} \frac{\text { net }_{k}}{\partial o_{j}} \frac{\partial o_{j}}{\partial n e t_{j}} \\
& =\sum_{k \in \text { Downstream }(j)}-\delta_{k} w_{k j} \frac{\partial o_{j}}{\partial n e t_{j}} \\
& =\sum_{k \in \text { Downstream }(j)}-\delta_{k} w_{k j} \underbrace{o_{j}\left(1-o_{j}\right)}_{\sigma^{\prime}(\text { net })} \tag{1}
\end{align*}
$$

Derivation of Δw : Hidden Unit Weights

Finally, given

$$
\frac{\partial E_{d}}{\partial w_{j i}}=\frac{\partial E_{d}}{\partial n e t_{j}} \frac{\partial n e t_{j}}{\partial w_{j i}}=\frac{\partial E_{d}}{\partial n e t_{j}} x_{i}
$$

and

$$
\frac{\partial E_{d}}{\partial n e t_{j}}=\sum_{k \in \text { Downstream }(j)}-\delta_{k} w_{k j} \underbrace{o_{j}\left(1-o_{j}\right)}_{\sigma^{\prime}(\text { net })}
$$

$\Delta w_{j i}=-\eta \frac{\partial E_{d}}{\partial w_{j i}}=\eta \underbrace{[\underbrace{o_{j}\left(1-o_{j}\right)}_{\sigma^{\prime}(\text { net })}}_{\delta_{j}} \underbrace{\sum_{k \in \text { Downstream }(j)} \delta_{k} w_{k j}}_{\text {error }}] x_{i}$

Backpropagation: Properties

- Gradient descent over entire network weight vector.
- Easily generalized to arbitrary directed graphs.
- Will find a local, not necessarily global error minimum:
- In practice, often works well (can run multiple times with different initial weights).
- Often include weight momentum α

$$
\Delta w_{i, j}(n)=\eta \delta_{j} x_{i, j}+\alpha \Delta w_{i, j}(n-1)
$$

- Minimizes error over training examples:
- Will it generalize well to subsequent examples?
- Training can take thousands of iterations \rightarrow slow!
- Using the network after training is very fast.

Extension to Different Network Topologies

- Arbitrary number of layers: for neurons in layer m :

$$
\delta_{r}=o_{r}\left(1-o_{r}\right) \sum_{s \in l a y e r} w_{s r} \delta s
$$

- Arbitrary acyclic graph:

$$
\delta_{r}=o_{r}\left(1-o_{r}\right) \sum_{s \in \text { Downstream }(r)} w_{s r} \delta s
$$

44

Representational Power of Feedforward Networks

- Boolean functions: every boolean function representable with two layers (hidden unit size can grow exponentially in the worst case: one hidden unit per input example, and "OR" them).
- Continous functions: Every bounded continuous function can be approximated with an arbitrarily small error (output units are linear).
- Arbitrary functions: with three layers (output units are linear).

H-Space Search and Inductive Bias

- H-space $=n$-D weight space (when there are n weights).
- The space is continuous, unlike decision tree or general-to-specific concept learning algorithms.
- Inductive bias:
- Smooth interpolation between data points.

Learned Hidden Layer Representations

| Input | Hidden
 Values | | | | | |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| 10000000 | \rightarrow | .89 | .04 | .08 | \rightarrow | 10000000 |
| 01000000 | \rightarrow | .01 | .11 | .88 | \rightarrow | 01000000 |
| 00100000 | \rightarrow | .01 | .97 | .27 | \rightarrow | 00100000 |
| 00010000 | \rightarrow | .99 | .97 | .71 | \rightarrow | 00010000 |
| 00001000 | \rightarrow | .03 | .05 | .02 | \rightarrow | 00001000 |
| 00000100 | \rightarrow | .22 | .99 | .99 | \rightarrow | 00000100 |
| 00000010 | \rightarrow | .80 | .01 | .98 | \rightarrow | 00000010 |
| 00000001 | \rightarrow | .60 | .94 | .01 | \rightarrow | 00000001 |

Learned Hidden Layer Representations

- Learned encoding is similar to standard 3-bit binary code.
- Automatic discovery of useful hidden layer representations is a key feature of ANN.
- Note: The hidden layer representation is compressed.

Overfitting

- Error in two different robot perception tasks.
- Training set and validation set error.
- Early stopping ensures good performance on unobserved samples, but must be careful.
- Weight decay, use of validation sets, use of k-fold cross-validation, etc. to overcome the problem.

Recurrent Networks

- Sequence recognition.
- Store tree structure (next slide).
- Can be trained with plain backpropagation.
- Generalization may not be perfect.

Alternative Error Functions

Penalize large weights:

$$
E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in o u t p u t s}\left(t_{k d}-o_{k d}\right)^{2}+\gamma \sum_{i, j} w_{j i}^{2}
$$

Train on target slopes as well as values (when the slope is available):
$E(\vec{w}) \equiv \frac{1}{2} \sum_{d \in D} \sum_{k \in \text { outputs }}\left[\left(t_{k d}-o_{k d}\right)^{2}+\mu \sum_{j \in \text { inputs }}\left(\frac{\partial t_{k d}}{\partial x_{d}^{j}}-\frac{\partial o_{k d}}{\partial x_{d}^{j}}\right)^{2}\right]$
Tie together weights:

- e.g., in phoneme recognition network, or
- handwritten character recognition (weight sharing).

52

Recurrent Networks (Cont'd)

- Autoassociation (intput = output)
- Represent a stack using the hidden layer representation.
- Accuracy depends on numerical precision.

Learning Time

- Applications:
- Sequence recognition: Speech recognition
- Sequence reproduction: Time-series prediction
- Sequence association
- Network architectures
- Time-delay networks (Waibel et al., 1989)
- Recurrent networks (Rumelhart et al., 1986)

Time-Delay Neural Networks

Recurrent Networks

Unfolding in Time

(b)

Some Applications: NETtalk

\qquad Thii

n p u t

- NETtalk: Sejnowski and Rosenberg (1987).
- Learn to pronounce English text.
- Demo
- Data available in UCI ML repository

Backpropagation Exercise

- URL: http://www.cs.tamu.edu/faculty/choe/src/backprop-1.6.tar.gz
- Untar and read the README file:

```
gzip -dc backprop-1.6.tar.gz | tar
xvf -
```

- Run make to build (on departmental unix machines).
- Run./bp conf/xor.confetc.

NETtalk data

```
aardvark a-rdvark 1<<<>2<<0
aback xb@k-0>1<<0
abacus @bxkxs 1<0>0<0
abaft xb@ft 0>1<<0
abalone @bxloni 2<0>1>0 0
abandon xb@ndxn 0>1<>0<0
abase xbes-0>1<<0
abash x.b@S-0>1<<0
a.bate x.bet-0>1<<0
abatis @bxti-1<0>2<2
...
- Word - Pronunciation - Stress/Syllable
- about 20,000 words
```


Backpropagation: Example Results

- Epoch: one full cycle of training through all training input patterns.
- OR was easiest, AND the next, and XOR was the most difficult to learn.
- Network had 2 input, 2 hidden and 1 output unit. Learning rate was 0.001.

Backpropagation: Example Results (cont'd)

Output to $(0,0),(0,1),(1,0)$, and $(1,1)$ form each row.

Backpropagation: Things to Try

- How does increasing the number of hidden layer units affect the (1) time and the (2) number of epochs of training?
- How does increasing or decreasing the learning rate affect the rate of convergence?
- How does changing the slope of the sigmoid affect the rate of convergence?
- Different problem domains: handwriting recognition, etc.

Structured MLP

(Le Cun et al, 1989)

Weight Sharing

Tuning the Network Size

- Destructive
- Weight decay:

$$
\begin{aligned}
& \Delta w_{i}=-\eta \frac{\partial E}{\partial w_{i}}-\lambda w_{i} \\
& E^{\prime}=E+\frac{\lambda}{2} \sum_{i} w_{i}^{2}
\end{aligned}
$$

- Constructive
- Growing networks

Dynamic Node Creation
(Ash, 1989)

Cascade Correlation
(Fahlman and Lebiere, 1989)

Summary

- ANN learning provides general method for learning real-valued functions over continuous or discrete-valued attributed.
- ANNs are robust to noise.
- H is the space of all functions parameterized by the weights.
- H space search is through gradient descent: convergence to local minima.
- Backpropagation gives novel hidden layer representations.
- Overfitting is an issue.
- More advanced algorithms exist.

Bayesian Learning

- Consider weights w_{i} as random vars, prior $p\left(w_{i}\right)$

$$
\begin{gathered}
p(\mathbf{w} \mid \mathcal{X})=\frac{p(X \mid \mathbf{w}) p(\mathbf{w})}{p(X)} \quad \hat{\mathbf{w}}_{\text {MAP }}=\underset{\mathbf{w}}{\arg \max \log p(\mathbf{w} \mid X)} \\
\log p(\mathbf{w} \mid \mathcal{X})=\log p(X \mid \mathbf{w})+\log p(\mathbf{w})+C \\
p(\mathbf{w})=\prod_{i} p\left(w_{i}\right) \text { where } p\left(w_{i}\right)=c \cdot \exp \left[-\frac{w_{i}^{2}}{2(1 / 2 \lambda)}\right] \\
E^{\prime}=E+\lambda\|\mathbf{w}\|^{2}
\end{gathered}
$$

- Weight decay, ridge regression, regularization cost=data-misfit $+\lambda$ complexity More about Bayesian methods in chapter 14

[^0]: $W_{0} \times I_{0}+W_{1} \times I_{1}-t>0$, then output is 1 :
 $1 \quad-t \leq 0 \quad \rightarrow \quad t \geq 0$
 $2 \quad W_{1}-t>0 \quad \rightarrow \quad W_{1}>t$
 $3 \quad W_{0}-t>0 \quad \rightarrow \quad W_{0}>t$
 $4 \quad W_{0}+W_{1}-t \leq 0 \quad \rightarrow \quad W_{0}+W_{1} \leq t$
 $2 t<W_{0}+W_{1}<t$ (from 2, 3, and 4), but $t \geq 0$ (from 1), a contradiction.

