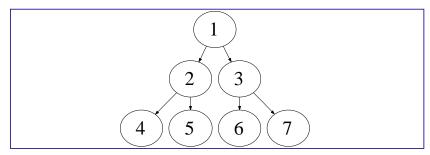
Search and Game Playing

- CSCE 315 Programming Studio
- Material drawn from Gordon Novak's Al course, Yoonsuck Choe's Al course, and Russell and Norvig's Artificial Intelligence, A Modern Approach, 2nd edition.

1

Search Problems: Definition



Search = < initial state, operators, goal states >

- Initial State: description of the current situation as given in a problem
- Operators: functions from any state to a set of successor (or neighbor) states
- Goal: subset of states, or test rule

Overview

• Search problems: definition

Example: 8-puzzle

General search

Evaluation of search strategies

Strategies: breadth-first, uniform-cost, depth-first

 More uninformed search: depth-limited, iterative deepening, bidirectional search

2

Variants of Search Problems

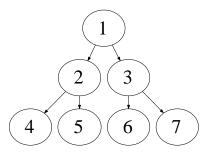
Search = < state space, initial state, operators, goal states >

 State space: set of all possible states reachable from the current initial state through repeated application of the operators (i.e. path).

Search = < initial state, operators, goal states, path cost >

 Path cost: find the best solution, not just a solution. Cost can be many different things.

Types of Search



- Uninformed: systematic strategies
- Informed: Use domain knowledge to narrow search
- Game playing as search: minimax, state pruning, probabilistic games

5

Operators

Function from state to subset of states

- drive to neighboring city
- place piece on chess board
- add person to meeting schedule
- slide tile in 8-puzzle

Characteristics

- often requires instantiation (fill in variables)
- encode constraints (only certain operations are allowed)
- ullet generally discrete: continuous parameters o infinite branching

Search State

State as Data Structure

- examples: variable assignment, properties, order in list, bitmap, graph (vertex and edges)
- captures all possible ways world could be
- typically static, discrete (symbolic), but doe snot have to be

Choosing a Good Representation

- concise (keep only the relevant features)
- explicit (easy to compute when needed)
- embeds constraints

6

Goals: Subset of states or test rules

Specification:

- set of states: enumerate the eligible states
- ullet partial description: e.g. a certain variable has value over x.
- constraints: or set of constraints. Hard to enumerate all states
 matching the constraints, or very hard to come up with a solution
 at all (i.e. you can only verify it; P vs. NP).

Other considerations:

space, time, quality (exact vs. approximate trade-offs)

An Example: 8-Puzzle

5	4			1	2	3
6	1	8	$ \rightarrow\uparrow \leftarrow\downarrow$	8		4
7	3	2		7	6	5

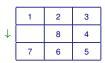
- State: location of 8 number tiles and one blank tile
- Operators: blank moves left, right, up, or down
- Goal test: state matches the configuration on the right (see above)
- Path cost: each step cost 1, i.e. path length, or search tree depth

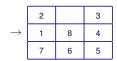
Generalization: 15-puzzle, ..., $(N^2 - 1)$ -puzzle

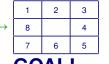
9

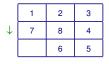
8-Puzzle: Search Tree

	2	3
1	8	4
7	6	5









	2	3	
\rightarrow	1	8	4
	7	6	5

	2	8	3	
L	1		4	
	7	6	5	

8-Puzzle: Example

	2	3		1	2	3		1	2	3
1	8	4	\downarrow		8	4	\rightarrow	8		4
7	6	5		7	6	5		7	6	5

Possible state representations in LISP (0 is the blank):

- (0 2 3 1 8 4 7 6 5)
- ((0 2 3) (1 8 4) (7 6 5))
- ((0 1 7) (2 8 6) (3 4 5))
- or use the make-array, aref functions.

How easy to: (1) compare, (2) operate on, and (3) store (i.e. size).

10

General Search Algorithm

Pseudo-code:

Evaluation of Search Strategies

• time-complexity: how many nodes expanded so far?

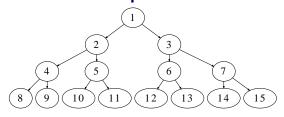
 space-complexity: how many nodes must be stored in node-list at any given time?

• completeness: if solution exists, guaranteed to be found?

• optimality: guaranteed to find the best solution?

13

BFS: Expand Order



Evolution of the queue (**bold**= expanded and added children):

1. [1]: initial state

2. [2][3]: dequeue 1 and enqueue 2 and 3

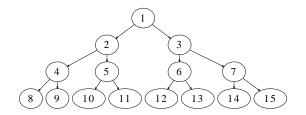
3. [3] [4][5]: dequeue 2 and enqueue 4 and 5

4. [4] [5] **[6][7]**: **all** depth 3 nodes

...

8. [8] [9] [10] [11] [12] [13] [14] [15]: all depth 4 nodes

Breadth First Search



node visit order (goal test): 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 queuing function: enqueue at end (add expanded node at the end of the list)

• Important: A node taken out of the node list for inspection counts as a single visit!

14

BFS: Evaluation

branching factor b, depth of solution d:

• complete: it will find the solution if it exists

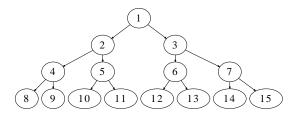
• time: $1 + b + b^2 + ... + b^d$

ullet space: $O(b^{d+1})$ where d is the depth of the shallowest solution

• space is more problem than time in most cases (p 75, figure 3.12).

• time is also a major problem nonetheless (same as time)

Depth First Search



- node visit order (goal test): 1 2 4 8 9 5 10 11 3 6 12 13 7 14 15
- queuing function: enqueue at left (stack push; add expanded node at the beginning of the list)

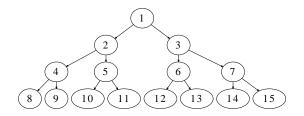
17

DFS: Evaluation

branching factor b, depth of solutions d, max depth m:

- incomplete: may wander down the wrong path
- time: $O(b^m)$ nodes expanded (worst case)
- space: O(bm) (just along the current path)
- good when there are many shallow goals
- bad for deep or infinite depth state space

DFS: Expand Order



Evolution of the gueue (**bold**=expanded and added children):

1. [1]: initial state

2. [2][3]: pop 1 and push expanded in the front

3. [4][5] [3]: pop 2 and push expanded in the front

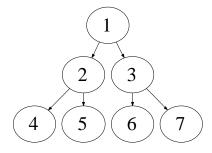
4. **[8][9]** [5] [3]: pop 4 and push expanded in the front

18

Key Points

- Description of a search problem: initial state, goals, operators, etc.
- Considerations in designing a representation for a state
- Evaluation criteria
- BFS, DFS: time and space complexity, completeness
- When to use one vs. another
- Node visit orders for each strategy
- Tracking the stack or queue at any moment

Depth Limited Search (DLS): Limited Depth DFS



- node visit order for each depth limit l: 1 (l = 1); 1 2 3 (l = 2); 1 2 4 5 3 6 7 (l = 3);
- queuing function: enqueue at front (i.e. stack push)
- push the depth of the node as well: (<depth> <node>)

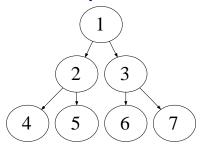
21

DLS: Evaluation

branching factor b, depth limit l, depth of solution d:

- ullet complete: if $l \geq d$
- $\bullet \ \, {\rm time} \colon O(b^l) \ \, {\rm nodes} \ \, {\rm expanded} \ \, ({\rm worst} \ \, {\rm case}) \\$
- $\bullet \,$ space: O(bl) (same as DFS, where l=m (m: max depth of tree in DFS)
- good if solution is within the limited depth.
- non-optimal (same problem as in DFS).

DLS: Expand Order

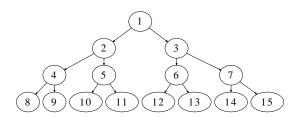


Evolution of the queue (**bold**=expanded and then added):

(<depth>, <node>); Depth limit = 3

- 1. [(d1, 1)]: initial state
- 2. [(d2,2)][(d2,3)]: pop 1 and push 2 and 3
- 3. [(d3,4)][(d3,5)][(d2,3)] : pop 2 and push 4 and 5
- 4. [(d3, 5)] [(d2, 3)]: pop 4, cannot expand it further
- 5. [(d2, 3)]: pop 5, cannot expand it further
- 6. [(d3,6)][(d3,7)]: pop 3, and push 6, 7

Iterative Deepening Search: DLS by Increasing Limit

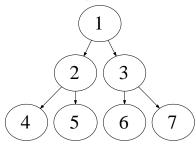


node visit order:

1; 1 2 3; 1 2 4 5 3 6 7; 1 2 4 8 9 5 10 11 3 6 12 13 7 14 15; ...

- revisits already explored nodes at successive depth limit
- queuing function: enqueue at front (i.e. stack push)
- push the depth of the node as well: (<depth> <node>)

IDS: Expand Order



Basically the same as DLS: Evolution of the queue (**bold**=expanded and then added): (<depth>, <node>)); e.g. Depth limit = 3

1. [(d1, 1)] : initial state

2. [(d2,2)][(d2,3)]: pop 1 and push 2 and 3

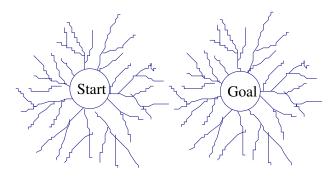
3. [(d3,4)][(d3,5)][(d2,3)] : pop 2 and push 4 and 5

4. [(d3, 5)] [(d2, 3)]: pop 4, cannot expand it further

5. [(d2,3)]: pop 5, cannot expand it further

6. [(d3,6)][(d3,7)]: pop 3, and push 6, 7

Bidirectional Search (BDS)



- Search from both initial state and goal to reduce search depth.
- ullet $O(b^{d/2})$ of BDS vs. $O(b^{d+1})$ of BFS.

branching factor b, depth of solution d:

• complete: cf. DLS, which is conditionally complete

ullet time: $O(b^d)$ nodes expanded (worst case)

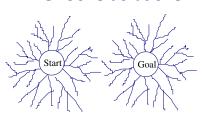
• space: O(bd) (cf. DFS and DLS)

• optimal!: unlike DFS or DLS

 good when search space is huge and the depth of the solution is not known (*)

26

BDS: Considerations



- 1. how to back trace from the goal?
- 2. successors and predecessors: are operations reversible?
- 3. are goals explicit?: need to know the goal to begin with
- 4. check overlap in two branches
- 5. BFS? DFS? which strategy to use? Same or different?

BDS Example: 8-Puzzle

5	4	
6	1	8
7	3	2

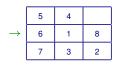
- Is it a good strategy?
- What about Chess? Would it be a good strategy?
- What kind of domains may be suitable for BDS?

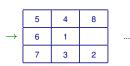
29

Avoiding Repeated States: Strategies

5	4	
6	1	8
7	3	2



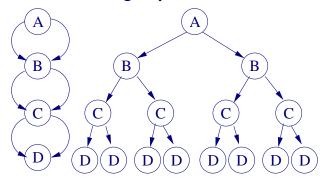




- Do not return to the node's parent
- Avoid cycles in the path (this is a huge theoretical problem in its own right)
- Do not generate states that you generated before: use a hash table to make checks efficient

How to avoid storing every state? Would using a short signature (or a checksum) of the full state description help?

Avoiding Repeated States



Repeated states can be devastating in search problems.

- Common cases: problems with reversible operators → search space becomes infinite
- One approach: find a spanning tree of the graph

30

Key Points

- DLS, IDS, BDS search order, expansions, and queuing
- DLS, IDS, BDS evaluation
- DLS, IDS, BDS: suitable domains
- Repeated states: why removing them is important

Overview

- Best-first search
- Heuristic function
- Greedy best-first search
- A*
- Designing good heuristics
- *IDA**
- Iterative improvement algorithms
 - 1. Hill-climbing
 - 2. Simulated annealing

33

Best First Search

function Best-First-Search (problem, Eval-Fn)

Queuing-Fn ← sorted list by Eval-Fn(node)

return General-Search(problem, Queuing-Fn)

- The queuing function queues the expanded nodes, and sorts it every time by the *Eval-Fn* value of each node.
- One of the simplest Eval-Fn: **estimated cost** to reach the goal.

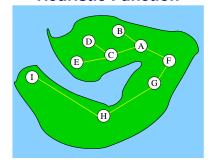
Informed Search

From domain knowledge, obtain an evaluation function.

- best-first search: order nodes according to the evaluation function value
- greedy search: minimize estimated cost for reaching the goal fast, but incomplete and non-optimal.
- A^* : minimize f(n)=g(n)+h(n), where g(n) is the current path cost from start to n, and h(n) is the estimated cost from n to goal.

34

Heuristic Function

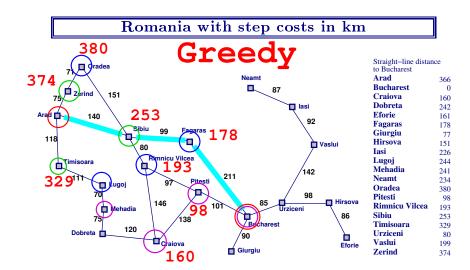


- h(n) = estimated cost of the cheapest path from the state at node n to a goal state.
- ullet The only requirement is the h(n)=0 at the goal.
- Heuristics means "to find" or "to discover", or more technically, "how to solve problems" (Polya, 1957).

Heuristics: Example

- $h_{\rm SLD}(n)$: straight line distance (SLD) is one example.
- Start from **A** and Goal is **I**: **C** is the most promising next step in terms of $h_{\rm SLD}(n)$, i.e. h(C) < h(B) < h(F)
- Requires some knowledge:
 - 1. coordinates of each city
 - 2. generally, cities toward the goal tend to have smaller SLD.

37



Total Path Cost = 450

Greedy Best-First Search

function Greedy-Best-First Search (problem) h(n) = estimated cost from n to goal $\mathbf{return} \text{ Best-First-Search}(problem, h)$

• Best-first with heuristic function h(n)

38

Greedy Best-First Search: Evaluation

Branching factor b and max depth m:

- Fast, just like Depth-First-Search: single path toward the goal.
- Time: $O(b^m)$
- Space: same as time all nodes are stored in sorted list(!),
 unlike DFS
- Incomplete, just like DFS
- Non-optimal, just like DFS

A*: Uniform Cost + Heuristic Search

Avoid expanding paths that are already found to be expensive:

- $\bullet \ f(n) = g(n) + h(n)$
- f(n): estimated cost to goal through node n
- provably complete and optimal!
- restrictions: h(n) should be an admissible heuristic
- \bullet admissible heuristic: one that ${\bf never}$ ${\bf overestimate}$ the actual cost of the best solution through n
- NOTE: f(n) can be different depending on the path taken to f(n) if multiple paths exists from root to n!

41

Behavior of A*Search

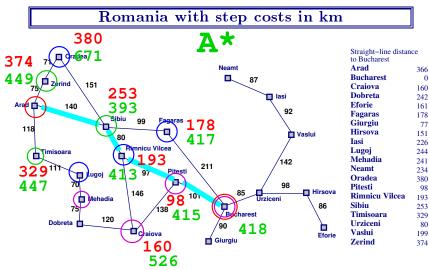
- usually, the f value never decreases along a given path:
 monotonicity
- in case it is nonmonotonic, i.e. f(Child) < f(Parent), make this adjustment: f(Child) = max(f(Parent), g(Child) + h(Child)).
- this is called pathmax

A*Search

function A^* -Search (problem) g(n) = current cost up till n h(n) = estimated cost from n to goal return Best-First-Search(problem, g+h)

- Condition: h(n) must be an **admissible heuristic function**!
- A*is optimal!

42



Optimality of A*

 G_2 : suboptimal goal in the node-list.

n: unexpanded node on a shortest path to goal G_1

- $f(G_2) = g(G_2)$ since $h(G_2) = 0$
- ullet $> g(G_1)$ since G_2 is suboptimal
- $\bullet \geq f(n)$ since h is admissible

Since $f(G_2) > f(n)$, A^* will never select G_2 for expansion.

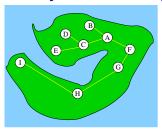
45

Lemma to Optimality of A*

Lemma: A^* expands nodes in order of increasing f(n) value.

- Gradually adds **f-contours** of nodes (cf. BFS adds layers).
- ullet The goal state may have a f value: let's call it f^*
- This means that all nodes with $f < f^*$ will be expanded!

Optimality of A*: Example



- 1. Expansion of parent allowed: search fails at nodes B, D, and E.
- 2. **Expansion of parent disallowed**: paths through nodes ${\bf B}, {\bf D},$ and ${\bf E}$ with have an inflated path cost g(n), thus will become nonoptimal.

$$A \to C \to E \to C \to A \to F \to \dots$$

46

Complexity of A*

 A^* is complete and optimal, but space complexity can become exponential if the heuristic is not good enough.

• condition for **subexponential** growth:

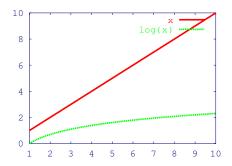
$$|h(n) - h^*(n)| \le O(\log h^*(n)),$$

where $h^*(n)$ is the **true** cost from n to the goal.

• that is, error in the estimated cost to reach the goal should be less than even linear, i.e. $< O(h^*(n))$.

Unfortunately, with most heuristics, error is at least proportional with the true cost, i.e. $> O(h^*(n)) > O(\log h^*(n))$.

Linear vs. Logarithmic Growth Error



- Error in heuristic: $|h(n) h^*(n)|$.
- For most heuristics, the error is at least linear.
- For A^* to have subexponential growth, the error in the heuristic should be on the order of $O(\log h^*(n))$.

49

A*: Evaluation

- $\bullet \;$ Complete : unless there are infinitely many nodes with $f(n) \leq f(G)$
- ullet Time complexity: exponential in (relative error in h imes length of solution)
- Space complexity: same as time (keep all nodes immediately outside of current f-contour in memory)
- Optimal

Problem with A*

Space complexity is usually exponential!

- we need a memory bounded version
- ullet one solution is: Iterative Deepening A^* , or IDA^*

50

Heuristic Functions: Example

2

3

4

5

Eight puzzle

5	4		1
6	1	8	8
7	3	2	7

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total **Manhattan** distance (city block distance)

 $h_1(n)$ = 7 (not counting the blank tile)

$$h_2(n) = 2+3+3+2+4+2+0+2 = 18$$

^{*} Both are admissible heuristic functions.

Dominance

If $h_2(n) \ge h_1(n)$ for all n and both are admissible, then we say that $h_2(n)$ dominates $h_1(n)$, and is better for search.

Typical search costs for depth d = 14:

- Iterative Deepening: 3,473,941 nodes expanded
- $A^*(h_1)$: 539 nodes
- $A^*(h_2)$: 113 nodes

Observe that in A^* , every node with $f < f^*$ is expanded. Since f = g + h, nodes with $h(n) < f^* - g(n)$ will be expanded, so larger h will result in less nodes being expanded.

• f^* is the f value for the optimal solution path.

53

Other Heuristic Design

- Use composite heuristics: $h(n) = max(h_1(n), ..., h_m(n))$
- Use statistical information: random sample h and true cost to reach goal. Find out how often h and true cost is related.

Designing Admissible Heuristics

Relax the problem to obtain an admissible heuristics.

For example, in 8-puzzle:

- allow tiles to move anywhere $\rightarrow h_1(n)$
- ullet allow tiles to move to any adjacent location $o h_2(n)$

For traveling:

• allow traveler to travel by air, not just by road: SLD

54

Iterative Deepening A^* : IDA^*

 A^* is complete and optimal, but the performance is limited by the available space.

- Basic idea: only search within a certain f bound, and gradually increase the f bound until a solution is found.
- Popular use include path finding in game AI.

IDA^*

function $IDA^*(problem)$ $root \leftarrow \text{Make-Node}(\text{Initial-State}(problem))$ $f\text{-}limit \leftarrow \text{f-Cost}(root)$ loop do $solution, f\text{-}limit \leftarrow \text{DFS-Contour}(root, f\text{-}limit)$ if solution != NULL then return solutionif $f\text{-}limit == \infty$ then return failureend loop

Basically, iterative deepening depth-first-search with depth defined as the f-cost (f = g + n):

57

IDA^* : Evaluation

- complete and optimal (with same restrictions as in A*)
- space: proportional to longest path that it explores (because it is depth first!)
- ullet time: dependent on the number of different values h(n) can assume.

DFS-Contour(root, f-limit)

Find solution from node **root**, within the f-cost limit of **f-limit**. DFS-Contour returns **solution sequence** and **new** f-**cost limit**.

- if f-cost(root) > f-limit, return fail.
- if **root** is a goal node, return solution and new *f*-cost limit.
- recursive call on all successors and return solution and minimum f-limit returned by the calls
- return **null solution** and new f-**limit** by default

Similar to the recursive implementation of DFS.

58

IDA*: Time Complexity

Depends on the heuristics:

- ullet small number of possible heuristic function values o small number of f-contours to explore o becomes similar to A^*
- complex problems: each f-contour only contain one new node if A^* expands N nodes, IDA^* expands $1+2+..+N=\frac{N(N+1)}{2}=O(N^2)$
- a possible solution is to have a **fixed** increment ϵ for the f-limit \rightarrow solution will be suboptimal for at most ϵ (ϵ -admissible)

Iterative Improvement Algorithms

Start with a complete configuration (all variable values assigned, and **optimal**), and **gradually improve** it.

- Hill-climbing (maximize cost function)
- Gradient descent (minimize cost function)
- Simulated Annealing (probabilistic)

61

Hill-Climbing Strategies

Problems of local maxima, plateau, and ridges:

- try random-restart: move to a random location in the landscape and restart search from there
- parallel search
- simulated annealing *

Hardness of problem depends on the shape of the landscape.

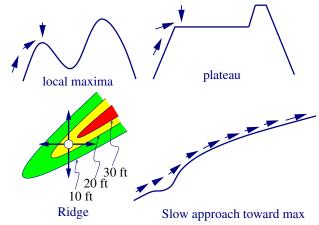
*: coming up next

Hill-Climbing

- no queue, keep only the best node
- greedy, no back-tracking
- good for domains where all nodes are solutions:
 - goal is to **improve** quality of the solution
 - optimization problems
- note that it is different from greedy search, which keeps a node list

62

Hill-Climbing and Gradient Search: Problems



 Possible solution: simulated annealing – gradually decrease randomness of move to attain globally optimal solution (more on this next week).

Simulated Annealing: Overview

Annealing:

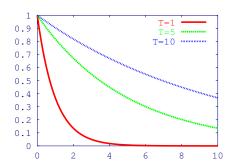
- heating metal to a high-temperature (making it a liquid) and then allowing to cool slowly (into a solid); this relieves internal stresses and results in a more stable, lower-energy state in the solid.
- at high temperature, atoms move actively (large distances with greater randomness), but as temperature is lowered, they become more static.

Simulated annealing is similar:

- basically, hill-climbing with randomness that allows going down as well as the standard up
- randomness (as temperature) is reduced over time

65

Temperature and $P(\Delta E) < \operatorname{rand}(0, 1)$



Downward moves of any size are allowed at high temperature, but at low temperature, only small downward moves are allowed.

- ullet Higher temperature $T \to {
 m higher}$ probability of **downward** hill-climbing
- Lower $\Delta E \rightarrow$ higher probability of **downward** hill-climbing

Simulated Annealing (SA)

Goal: minimize (not maximize) the energy E, as in statistical thermodynamics.

For successors of the current node,

- if $\Delta E \leq 0$, the move is accepted
- if $\Delta E>0$, the move is accepted with probability $P(\Delta E)=e^{-\frac{\Delta E}{kT}}$, where k is the Boltzmann constant and T is temperature.
- randomness is in the comparison: $P(\Delta E) < \operatorname{rand}(0,1)$

$$\Delta E = E_{\text{new}} - E_{\text{old}}$$
.

The heuristic h(n) or f(n) represents E.

66

T Reduction Schedule

High to low temperature reduction schedule is important:

- reduction too fast: suboptimal solution
- reduction too slow: wasted time
- question: does the form of the reduction schedule curve matter?
 linear, quadratic, exponential, etc.?

The proper values are usually found experimentally.

Simulated Annealing Applications

- VLSI wire routing and placement
- Various scheduling optimization tasks
- Traffic control
- Neural network training
- etc.

69

Game Playing

Key Points

- best-first-search: definition
- heuristic function h(n): what it is
- greedy search: relation to h(n) and evaluation. How it is different from DFS (time complexity, space complexity)
- A*: definition, evaluation, conditions of optimality
- complexity of A*: relation to error in heuristics
- designing good heuristics: several rule-of-thumbs
- IDA^* : evaluation, time and space complexity (worst case)
- hill-climbing concept and strategies
- simulated annealing: core algorithm, effect of T and ΔE , source of randomness.

70

Game Playing

- attractive AI problem because it is abstract
- one of the oldest domains in Al
- in most cases, the world state is fully accessible
- computer representation of the situation can be clear and exact
- challenging: uncertainty introduced by the opponent and the complexity of the problem (full search is impossible)
- hard: in chess, branching factor is about 35, and 50 moves by each player $=35^{100}$ nodes to search compare to 10^{40} possible legal board states
 - position to to position togal sould states
- game playing is more like real life than mechanical search

Games vs. Search Problems

"Unpredictable" opponent o solution is a contingency plan

Time limits \rightarrow unlikely to find goal, must approximate

Plan of attack:

- algorithm for perfect play (Von Neumann, 1944)
- finite horizon, approximate evaluation (Zuse, 1945; Shannon, 1950; Samuel, 1952–57)
- pruning to reduce costs (McCarthy, 1956)

73

Two-Person Perfect Information Game

initial state: initial position and who goes first

operators: legal moves
terminal test: game over?

utility function: outcome (win:+1, lose:-1, draw:0, etc.)

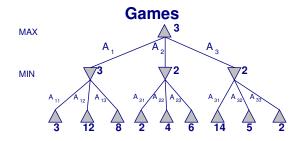
- two players (MIN and MAX) taking turns to maximize their chances of winning (each turn generates one ply)
- one player's victory is another's defeat
- need a **strategy** to win no matter what the opponent does

Types of Games

	deterministic	chance
perfect info	chess, checkers, go, othello	backgammon, monopoly
imperfect info	battle ship	bridge, poker, scrabble

74

Minimax: Strategy for Two-Person Perfect Info



- generate the whole tree, and apply util function to the leaves
- go back upward assigning utility value to each node
- at MIN node, assign min(successors' utility)
- at MAX node, assign max(successors' utility)
- assumption: the opponent acts optimally

Minimax Decision

function Minimax-Decision (game) returns operator
 return operator that leads to a child state with the
 max(Minimax-Value(child state,game))

function Minimax-Value(state,game) returns utility value

if Goal(state), return Utility(state)

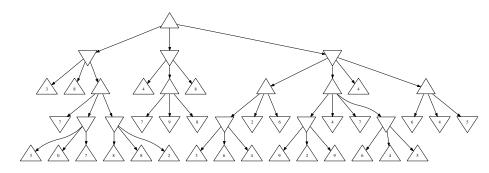
else if Max's move then

ightarrow return max of successors' Minimax-Value

else

→ return min of successors' Minimax-Value

Minimax Exercise



77

Minimax: Evaluation

Branching factor b, max depth m:

• complete: if the game tree is finite

• optimal: if opponent is optimal

 $\bullet \; \; {\rm time} ; \, b^m$

• **space**: bm – depth-first (only when utility function values of all nodes are known!)

78

Resource Limits

- \bullet Time limit: as in Chess \rightarrow can only evaluate a fixed number of paths
- Approaches:

- evaluation function : how desirable is a given state?

- cutoff test : depth limit

- pruning

Depth limit can result in the **horizon effect**: interesting or devastating events can be just over the horizon!

Evaluation Functions

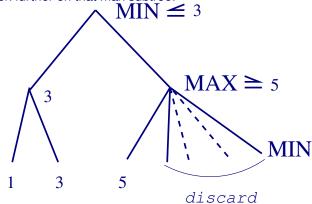
For chess, usually a linear weighted sum of feature values:

- Eval(s) = $\sum_i w_i f_i(s)$
- ullet $f_i(s) =$ (number of white piece X) (number of black piece X)
- other features: degree of control over the center area
- exact values do not matter: the order of Minimax-Value of the successors matter.

81

β Cuts

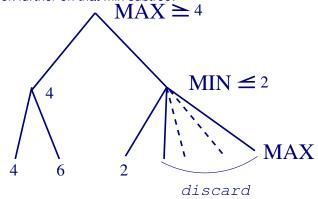
When the current min value is less than the successor's max value, don't look further on that max subtree:



Right subtree can be **at least** 5, so MIN will always choose the left path regardless of what appears next.

α Cuts

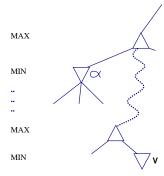
When the current max value is greater than the successor's min value, don't look further on that min subtree:



Right subtree can be **at most** 2, so MAX will always choose the left path regardless of what appears next.

82

 $\alpha - \beta$ Pruning



- ullet memory of best MAX value lpha and best MIN value eta
- do not go further on any one that does worse than the remembered α and β

$\alpha-\beta$ Pruning Properties

Cut off nodes that are known to be suboptimal.

Properties:

- pruning does not affect final result
- good move ordering improves effectiveness of pruning
- with **perfect ordering**, time complexity = $b^{m/2}$
 - \rightarrow **doubles** depth of search
 - ightarrow can easily reach 8-ply in chess
- $b^{m/2}=(\sqrt{b})^m$, thus b=35 in chess reduces to $b=\sqrt{35}\approx 6$!!!

85

Overview

- formal $\alpha \beta$ pruning algorithm
- $\alpha \beta$ pruning properties
- games with an element of chance
- state-of-the-art game playing with AI
- more complex games

Key Points

- Game playing: what are the types of games?
- Minimax: definition, and how to get minmax values
- Minimax: evaluation
- α - β pruning: why it saves time

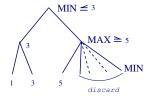
86

$\alpha-\beta$ Pruning: Initialization

Along the path from the beginning to the current **state**:

- α: best MAX value
 - · initialize to $-\infty$
- β : best MIN value
 - · initialize to ∞

$\alpha-\beta$ Pruning Algorithm: Max-Value



function Max-Value (state, game, α , β) **return** utility value α : best MAX on path to state; β : best MIN on path to state **if** Cutoff(state) **then return** Utility(state)

 $v \leftarrow -\infty$

for each s in Successor(state) do

- $v \leftarrow \text{Max}(\alpha, \text{Min-Value}(s, \text{game}, \alpha, \beta))$
- · if $v>\beta$ then return v /* CUT!! */
- $\cdot \quad \alpha \leftarrow \mathsf{Max}(\alpha, v)$

end

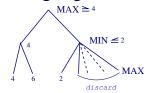
return v

89

$\alpha-\beta$ Pruning Tips

- At a MAX node:
 - Only α is updated with the MAX of successors.
 - Cut is done by checking if returned $v \geq \beta$.
 - If all fails, ${\sf MAX}(v)$ of succesors) is returned.
- At a MIN node:
 - Only β is updated with the MIN of successors.
 - Cut is done by checking if returned $v \leq \alpha$.
 - If all fails, MIN(v) of succesors) is returned.

 $\alpha-\beta$ Pruning Algorithm: Min-Value



function Min-Value (state, game, α , β) **return** utility value α : best MAX on path to *state*; β : best MIN on path to *state* **if** Cutoff(state) **then return** Utility (state)

 $v \leftarrow \infty$

for each s in Successor(state) do

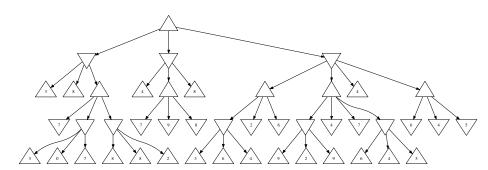
- $v \leftarrow \text{Min}(\beta, \text{Max-Value}(s, \text{game}, \alpha, \beta))$
- · if $v \leq \alpha$ then return v /* CUT!! *
- $\cdot \quad \beta \leftarrow \mathsf{Min}(\beta, v)$

end

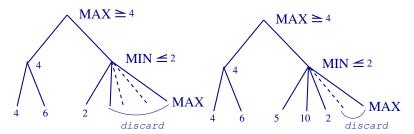
return v

90

$\alpha - \beta$ Exercise



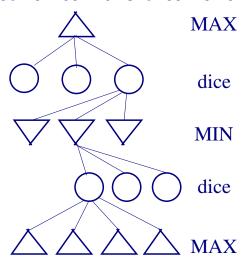
Ordering is Important for Good Pruning



- For MIN, sorting successor's utility in an increasing order is better (shown above; left).
- For MAX, sorting in **decreasing** order is better.

93

Game Tree With Chance Element



• chance element forms a new ply (e.g. dice, shown above)

Games With an Element of Chance

Rolling the dice, shuffling the deck of card and drawing, etc.

- chance nodes need to be included in the minimax tree
- try to make a move that maximizes the expected value → expectimax
- expected value of random variable X:

$$E(X) = \sum_{x} x P(x)$$

expectimax

$$\operatorname{expectimax}(C) = \sum_{i} P(d_i) \max_{s \in S(C, d_i)} (utility(s))$$

94

Design Considerations for Probabilistic Games

- the value of evaluation function, not just the scale matters now!
 (think of what expected value is)
- time complexity: $b^m n^m$, where n is the number of distinct dice rolls
- pruning can be done if we are careful

State of the Art in Gaming With Al

- Chess: IBM's Deep Blue defeated Garry Kasparov (1997)
- ullet Backgammon: Tesauro's Neural Network o top three (1992)
- ullet Othello: smaller search space o superhuman performance
- Checkers: Samuel's Checker Program running on 10Kbyte (1952)

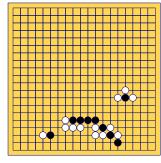
Genetic algorithms can perform very well on select domains.

97

Key Points

- formal $\alpha \beta$ pruning algorithm: know how to apply pruning
- $\alpha \beta$ pruning properties: evaluation
- games with an element of chance: what are the added elements?
 how does the minmax tree get augmented?

Hard Games



The game of Go, popular in East Asia:

- $19 \times 19 = 361$ grid: branching factor is huge!
- search methods inevitably fail: need more structured rules
- the bet was high: \$1,400,000 prize for the first computer program to beat a select, 12-year old player. The late Mr. Ing Chang Ki (photo above) put up the money from his personal funds.

Photo from http://www.samsloan.com/ing.htm.

98