
These slides are by Dr. Jaerock Kwon at Kettering University.

The original URL is

http://kettering.jrkwon.com/sites/default/files/2011-2/ce-491/lecture/aLecture-02.pdf

so please use that instead of pointing to this local copy at tamu.edu.

App Development for Mobile Devices
Jaerock Kwon, Ph.D. Assistant Professor in Computer Engineering

Announcement 2

Kettering University

Lecture 2
Application Fundamentals

3

Kettering University

Today’s Topics

 Android development tools
  Virtual Device Manager

  Android Emulator

  Dalvik Debug Monitoring Service

 Application components
  Activity

  Service

  Broadcast receiver

  Content provider

  Intent

  App manifest

 Application resources

4

Kettering University

Android Development Tools

Kettering University

5

Virtual Device Manager

 Create and manage Android Virtual Devices
  Window menu item in Eclipse – Android SDK and AVD Manager

  You can start Android Emulator from the AVD Manager.

6

Kettering University

Android Emulator

 An implementation of the Android virtual machine.

  Use this to test and debug your Android applications.

7

Kettering University

Dalvik Debug Monitoring Service

  Use the DDMS perspective to monitor and control Dalvik virtual
machines on which you are debugging your apps.

8

Kettering University

Android Applications

9

Kettering University

Android Application

 Written in Java

  The compiled Java code along with resource files and data is
bundled by aapt tool into an Android package.
  aapt (Android Asset Packaging Tool)

  Probably you will not use this directly.

  IDE plugins utilizes this tool to package the apk file.

  Android package:

  A single archive file. Its filename extension is .apk.

  This apk file is the file that users download to their devices.

  Linux process
  Every application runs in its own Linux process.

  Each process has its own virtual machine.

10

Kettering University

Central Feature of Android

 An application can use elements of other applications (should be
permitted by the apps).
  For this to work, an application process can be started when any part of

it is needed and instantiate the Java objects for that part.

  Therefore, Android apps don’t have a single entry point (like main()
function).

  Rather they have essential components that the system can instantiate
and run as needed.

  Four types of components
  Activities

  Services

  Broadcast receivers

  Content providers

11

Kettering University

Application Components

12

Kettering University

Activities

 Application’s presentation layer.

  Every screen in you app is an extension of the Activity class.

  Each activity is given a default window to draw in.

 Activities use Views to form GUI.
  Each view controls a particular rectangular space within the window.

  Views are where the activity’s interaction with the user takes place.

  ContentView is the root view object in the hierarchy of views.

  Activity.setContentView() method.

 Activity is equivalent to Form in desktop environment.

13

Kettering University

Services

 No visual interface.

  Runs in the background of an indefinite period of time.

  Examples:
  Play background music, fetch data over the network.

  Each service extends the Service base class

  It is possible to connect to an ongoing service (and start the service
if it is not already running).
  You can communicate with service through an interface that the service

exposes.
  Examples: start, pause, stop, restart playback.

  Services run in the main thread of the application process.
  It is not a sub thread of other components.

14

Kettering University

Broadcast Receivers

 A Broadcast Receiver receives and reacts to broadcast
announcements.

  Broadcast examples from the system
  The timezone change, the battery is low, a picture has been taken, and

etc.

 An application can have any number of receivers to respond to
any announcements.

  BRs do not display user interface.

  BRs can start an activity in response to the information they receive.

15

Kettering University

Intents

  Activities, Services, Broadcast Receivers are activated by Intents, asynchronous
messages.

  You can broadcast messages system-wide or to a target Activity or Service.

  Then, the system will determine the target(s) that will perform any actions as
appropriate.

  Separate methods for activating each type of component.
  Activity: Context.startActivty() or Activity.startActivityForResult()

  The responding activity can look at the initial intent that caused it to be launched by
calling getIntent().

  Service: Context.startService()
  Android calls the service’s onStart() method and passes it the intent object.

  Broadcast: Context.sendBroadcast(), Context.sendOrderedBroadcast(), …
  Android delivers the intent to all interested receivers by calling their onReceive()

16

Kettering University

An inter-app message passing framework

Intents Object and Intent Filters

  Intent Object
  An abstract description of an operation to be performed.

  Android system finds the appropriate activity, service, or set of
broadcast receivers to respond to the intent.

  Two groups of intents
  Explicit intents:

  They name the target component.
  Component names are not known to developers of other apps.
  So they are used for application internal messages.

  Implicit intents:
  They are often used to activate components in other apps.

  For implicit intents
  Need to test the intent object against Intents Filters associated with

potential target.

17

Kettering University

Intent Objects

  Intent Objects contains information of component that receives the intent and the
Android system

  Intent Objects contains
  Component name - optional
  Action

  A string naming the action to be performed.
  Examples

  ACTION_CALL: Initiate a phone call
  ACTION_EDIT: Display data for the user to edit
  ACTION_MAIN: Start up as the initial activity of a task
  ACTION_BATTERY_LOW: A WARNING THAT THE BATTERIY IS LOW

  Data
  The URL of the data to be acted on.

  Category
  Examples:

  CATEGORY_HOME: The activity displays the home screen.
  CATEGORY_LAUNCHER: The activity can be the initial activity and is listed in the top-level

application launcher.

18

Kettering University

A bundle of information

Intent Filters

  Intents should be resolved since implicit intents do not name a
target component.

  Intent filters are generally in the app’s manifest file
(AndroidManifest.xml)

 Most apps have a way to start fresh. The following action and
category are default values of an Android project.
 <intent-filter>

 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

19

Kettering University

Note Pad Example

  There are three activities: NotesList, NoteEditor, and TitleEditor
  <activity android:name="NotesList" android:label="@string/title_notes_list”>

…
</activity>
<activity android:name="NoteEditor” ...
…
</activity>
<activity android:name="TitleEditor” ...
…
</activity>

  Each activity has intent-filters. Followings are from NotesList activity.
  <intent-filter>

 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
<intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <action android:name="android.intent.action.EDIT" />
 <action android:name="android.intent.action.PICK" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:mimeType="vnd.android.cursor.dir/vnd.google.note" />
</intent-filter>

  The second intent filter declares that the activity can VIEW, EDIT, PICK
in the data URI.

20

Kettering University

A Simple Dialer

  Your program should have something like…
String number = "tel:810-555-1234”;
Intent callIntent = new Intent(Intent.ACTION_CALL, Uri.parse(number));
startActivity(callIntent);

 Do not forget to add the permission for phone call in your App
Manifest XML file.
uses-permission android:name="android.permission.CALL_PHONE"

21

Kettering University

Content Providers

 A CP makes a specific set of the app’s data available to other
apps.

  ContentProvider base class should be extended to implement a
standard set of methods.

  You can share your data and you can access shared data of other
apps.

 Apps do not call ContentProver methods directly. Rather they use
a ContentResolver object and call its methods instead.

  ContentProviders are activated when they are targeted by a
request from a ContentResolvers.

22

Kettering University

Shutting down Components

 An activity can be shut down by calling its finish() method.

 A service can be stopped by calling its stopSelf() or
Context.stopService().

23

Kettering University

App Manifest

  Each Android project includes a manifest file, AndroidManifest.xml for all
apps (same name).

  A structured XML file.

  The principal task of it is to inform Android about the app’s components.
  <activity>, <service>, <receiver> elements
<?xml version="1.0" encoding="utf-8"?>
<manifest . . . >
 <application . . . >
 <activity android:name=”edu.kettering.project.FreneticActivity"
 android:icon="@drawable/small_pic.png"
 android:label="@string/freneticLabel"
 . . . >
 </activity>
 . . .
 </application>
</manifest>

24

Kettering University

App Manifest - Intent Filters

  IFs declare the capabilities of its parent component.
  What an activity or service can do and what types of broadcasts a

receiver can handle.

 Action “android.intent.action.MAIN” and category
“android.intent.category.LAUNCHER” is the most common
combination.
  Note: application launcher: the screen listing apps where users can

launch an app.

  The activity is the entry point for the app.

25

Kettering University

<intent-filter . . . >
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

Activity, Tasks, and Processes

Kettering University

26 Activities, Tasks, and Processes

 One activity can start another including one in a different app.
  Example:

  Your activity needs to display a street map.

  Assuming there is an activity that can do this.

  You activity put together an Intent object and pass it to
startActivity().

 Definitions
  Activity

  The… Android ‘Activity’

  Task

  A stack of activities

  Process

  A standard Linux process

27

Kettering University

Activities, Tasks, and Processes 28

Kettering University

Activity Activity

Content Provider

Service

Process

.apk Package

Activity

Content Provider

Process

.apk Package

Process

Service

Activities, Tasks, and Processes 29

Kettering University

Activity Activity

Content Provider

Service

Process

.apk Package

Activity

Content Provider

Process

.apk Package

Process

Service

Task

Process and Thread

 Application components are Linux processes.
  When the first of an app’s components needs to be run, Android starts a

Linux process for it with a single thread of execution.

  Process
  It is controlled by the Manifest file.

  Thread
  User interface should always be quick to respond to user actions.

  Anything that may not be completed quickly should be assigned to a
different thread.

  Threads are created in code using standard Java Thread objects.

  Android also provides many convenient classes for managing threads.

30

Kettering University

Android Activity Lifecycle

 An activity has three states:
  Active, or running:

  When it is in the foreground of the screen.

  Paused:

  When it lost focus but is still visible to the user.

  Stopped:

  When it is completely obscured by another activity.

  It still remains all state and member information.

  It may be killed by the system when memory is needed elsewhere.

 Note: When an activity is paused or stopped, the system can drop it
from memory or simply kill its process.

31

Kettering University

Android Activity Lifecycle

  Entire life time of an activity
  onCreate() – onDestrory()

 Visible life time
  onStart() – onStop()

  Foreground life time
  onResume() – onPause()

32

Kettering University

void onCreate(Bundle savedInstanceState)
void onStart()
void onRestart()
void onResume()
void onPause()
void onStop()
void onDestroy()

Android Activity Lifecycle

  Since the system can shut down an activity, the user may expect to
return to the activity and find it in its previous state.

  onSaveInstanceState()
  Android calls this method before making the activity to being destroyed.

  onRestoreInstanceState()
  Android calls onRestoreInstanceState() after calling onStart().

 Note that these two methods are not lifecycle methods.
  They are not called in a proper lifecycle step.

  You cannot rely on these methods to save some persistent data.

33

Kettering University

Saving Activity State

Application Resources

Kettering University

34 Resource Externalization

  Externalizing resources such as images and strings
  You can maintain them separately from your actual code.

  This allows you to provide alternative resources that support different
languages, different screen sizes.

  This is extremely important because Android-powered devices become
available with different configurations.

35

Kettering University

Grouping Resource Types

  Place resources in a specific subdirectory of your project’s res/
directory.

  Resource directories supported inside project res/ directory.

36

Kettering University

Directory Type

anim/ Define tween animation

color/ Define a state list of colors

drawable/ Bitmap files or XML files that

layout/ Define user interface layout

menu/ Options Menu, Context Menu, or Sub Menu

raw/ Arbitrary files to save in their raw form

values/ Strings, integers, colors

xml/ Arbitrary XML files

Providing Alternative Resources

  To specify configuration-specific alternatives for a set of resources:
  Create a new directory in res/ named in the form <resources_name>-<config_qualifier>.

  <resources_name> is the directory name of the corresponding default resources.
  <qualifier> is a name that specifies an individual configuration for which these resources.
  You can append more than one <qualifier>. Separate each one with a dash.
  Save the respective alternative resources in this new directory. The resource files must be

named exactly the same as the default resource files.

  For example, here are some default and alternative resources:
res/

 drawable/

 icon.png

 background.png

 drawable-hdpi/

 icon.png

 background.png

37

Kettering University

Creating Resources

  String
  <string name=“your_name”>Kettering</string>

  Color
  <color name=“transparent_blue”>#770000FF</color>
  Format

  #RGB
  #RRGGBB
  #ARGB
  #AARRGGBB

  Dimensions
  <dime name=“border”>5dp</dimen>
  Scale identifier

  px (screen pixels)
  in (physical inches)
  pt (physical points)
  mm (physical millimeters)
  dp (density independent pixels relative to a 160-dpi screen)
  sp (scale independent pixels)

38

Kettering University

Simple Values

Creating Resources

 Drawable
  Drawable resources include bitmaps and NinePatch (stretchable PNG)

images.

  Layouts
  Layout resources let you decouple your app’s presentation layer.

  Designing user interfaces in XML rather than constructing them in code.

39

Kettering University

Accessing Resources

  You can refer a resource via its ID.

  R class
  All resource IDs are defined in your project’s R class.
  The R class is automatically generated by the aapt tool.

  Resource ID
  A resource ID has a unique name and is composed of:

  Resource type:
  string, drawable, layout, etc.

  Resouce name:
  Either the filename (excluding the extension) or the value in the XML

android.name attribute, if the resource is a simple value such as a string,
a color.

  Accessing a resouce: string is a resource type. hello is a resource name
  In code: R.string.hello
  In XML: @string/hello

40

Kettering University

Layout Definition

  Layout is an architecture about user interfaces in an Activity

  Two ways of definition of layouts
  XML

  Use resource editor to make layout.

  ADT provides the preview of an XML file.

  The best way is to make a layout is using both the XML editor and the
XML graphical editor.

  In code

  Create Views and ViewGroups in runtime.

41

Kettering University

XML for Resource

 Only one root element that should be a View or a ViewGroup.

 Add child elements to the root view.

42

Kettering University

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >
 <TextView android:id="@+id/text"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello, I am a TextView" />
 <Button android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello, I am a Button" />
</LinearLayout>

XML Resource Load

 When you compile your source code, each XML layout file is
compiled into a View resource.

  You should load it in your Activity.onCreate().

  XML file: res/layout/*.xml
  If the xml file name is main.xml, then the layout can be accessed by
R.layout.main in your source code.

43

Kettering University

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView.(R.layout.main);
}

ID of Element

  Any View object has a unique ID.

  In your XML code, the ID is defined with a string.
  android:id=“@+id/myButton”
  @ indicates the rest of the string should be identified as an ID resource.
  + means adding new resource name.

  In your source code, the ID can be referred by an integer.
  Button myButton = (Button)findViewById(R.id.myButton);

  Example:

44

Kettering University

In XML …
<Button android:id="@+id/myButton"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/my_button_text"/>

In source code …
Button myButton = (Button) findViewById(R.id.myButton);

Questions?

45

Kettering University

