
Reinforcement Learning

• Blue slides: Mitchell

• Turquoise slides: Alpaydin

1

Reinforcement Learning (RL)

• How an autonomous agent that sense and act in the

environment can learn to choose optimal actions to achieve its

goals.

• Examples: mobile robot, optimization in process control, board

games, etc.

• Ingredients: reward/penalty for each action, where the

reinforcement signal can be significantly delayed.

• One approach: Q learning

2

Introduction: Agent

Terminology:

• State: state of the environment, obtained through sensors

• Action: alter the state

• Policy: choosing actions that achieve a particular goal, based on

the current state.

• Goal: desired configuration (or state).

Desired policy:

• From any initial state, choose actions that maximize the reward

accumulated over time by the agent.

3

RL Task

s 0
a0

r0
s 1

a1
r1

s 2
a2

r2

Environment

Agent

State Action

...

Reward

• Goal: learn to choose actions that maximize discounted,

cumulative award:

r0 + γr1 + γ2r2 + ...,where 0 ≤ γ < 1.

• That is, we want to learn a policy π : S → A that maximizes the

above, where S is the set of states, andA that of actions.

4

Introduction
 Game-playing: Sequence of moves to win a game

 Robot in a maze: Sequence of actions to find a goal

 Agent has a state in an environment, takes an action and
sometimes receives reward and the state changes

 Credit-assignment

 Learn a policy

3Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Single State: K-armed Bandit

        aQaraQaQ tttt   11 

4

 Among K levers, choose
the one that pays best

Q(a): value of action a
Reward is ra

Set Q(a) = ra

Choose a* if
Q(a*)=maxa Q(a)

 Rewards stochastic (keep an expected reward):

Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Variations of RL Tasks

• Deterministic vs. nondeterministic action outcomes.

• With or without prior knowledge about the effect of action on

environmental state.

• Partially or fully known environmental state (e.g., Partially

Observable Markov Decision Process [POMDP]).

5

RL Compared to Other Learning Algorithms

• Planning (in AI)

• Function approximation: π : S → A.

• Differences:

– Delayed reward

– Exploration vs. exploitation

– Partially observable states

– Life-long learning: leveraging on existing knowledge, to make

learning of a new complex task easier.

6

The Learning Task

Markov Decision Process: only immediate state matters.

• State st, action at at time step t.

• Reward from environment: rt = r(st, at)

• State transition by environment: st+1 = δ(st, at)

• r(·, ·) and δ(·, ·) may be unknown to the agent!

• Task: learn π : S → A to select at = π(st).

• Question: how to specify which π to learn?

7

Elements of RL (Markov Decision
Processes)
 st : State of agent at time t

 at: Action taken at time t

 In st, action at is taken, clock ticks and reward rt+1 is
received and state changes to st+1

 Next state prob: P (st+1 | st , at)

 Reward prob: p (rt+1 | st , at)

 Initial state(s), goal state(s)

 Episode (trial) of actions from initial state to goal

 (Sutton and Barto, 1998; Kaelbling et al., 1996)

5Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Discounted Cumulative Reward: V π(st)

• Obvious approach is to find π that maximizes the cumulative

reward when π is executed:

V π(st) ≡ rt + γrt+1 + γ2rt+2 + ...

≡
∞X
i=0

γirt+i,

where 0 ≤ γ < 1 is the discount rate.

• π is repeatedly executed: at = π(st), at+1 = π(st+1), ...

• When γ = 0, only the current reward is used.

• When γ → 1, future rewards become more important.

8

Choosing a Policy

• Optimal policy π∗

π∗ = argmax
π

V π(s), ∀s

• Want a policy that does its best for all states.

• Cumulative reward under optimal policy π∗:

V ∗(s) ≡ V π∗ (s),

for short.

9

Example: Grid World

G
1000

0
0

0
0

0
0

0 0

0 100

• Immediate reward given only when entering the goal stateG.

• Given any initial state, we want to generate an action sequence to

maximize V .

10

Grid World: V ∗(s) Values

G
1000

0
0

0
0

0
0

0 0

0 100

G90 100
0

81 90 100

(a) r(s, a) values (b) V ∗(s) values

• Discount rate: γ = 0.9.

• Top middle: 100 + γ0 + γ20 + ... = 100

• Top left: 0 + γ100 + γ20 + ... = 90

• Bottom left: 0 + γ0 + γ2100 + ... = 81

• Note that these values are supposed to be obtained using the

optimal policy π∗.

11

Q Learning

• Policy is hard to learn directly, because training experience does

not provide< s, a > pairs.

• Only available info: sequence of immediate rewards r(si, ai) for

i = 0, 1, 2,

• In this case, it is easier to learn an evaluation function and

construct a policy based on that.

12

Optimal Policy using V ∗(s)

G
1000

0
0

0
0

0
0

0 0

0 100

G90 100
0

81 90 100

(a) r(s, a) values (b) V ∗(s) values

• If reward r(s, a), state transition δ(s), and evaluation function

V ∗(s) are known the following gives an optimal policy:

π∗(s) = argmax
a

[r(s, a) + γV ∗(δ(s, a))]

• For example, top middle state: move right = 100 + γ0 = 100,

move left = 0 + γ90 = 81, move down = 0 + γ90 = 81.

13

 Environment, P (st+1 | st , at), p (rt+1 | st , at), is known

 There is no need for exploration

 Can be solved using dynamic programming

 Solve for

 Optimal policy

Model-Based Learning

       













  



111

1

t
s

tttt
a

t sVassPrEsV
t

t

** ,|max 

8

       













  



111

1

t
s

tttttt
a

t sVassPasrEs
tt

,|,|max arg 

Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Problems with Policy Based on V ∗(s)

• Requires perfect knowledge of r(s, a) and δ(s, a), to exactly

predict the outcome and reward of a particular action.

• In practice, the above is impossible.

• Thus, even when V ∗(s) is known, π∗(s) cannot be found.

Refer to:

π∗(s) = argmax
a

[r(s, a) + γV ∗(δ(s, a))]

• Solution: use a surrogate – theQ function.

14

The Q Function

Can we get by without explicit knowledge of r(s, a) and δ(s, a)?

• Q(s, a): evaluation function whose value is the maximum

discounted cumulative reward obtainable when action a is

taken in state s:

Q(s, a) ≡ r(s, a) + γV ∗(δ(s, a))

• The derived policy is then:

π∗(s) = argmax
a

Q(s, a)

Note that ifQ(s, a) can be learned without any reference to

r(s, a) and δ(s, a), we have solved our problem.

• Further problem: how to estimateQ(s, a)?

15

Learning the Q Function: Getting Rid of V ∗(δ(s, a))

• Q(s, a) is defined over all possible actions a from state s. But

note that one of these actions is optimal for state s, and thus:

V ∗(s) = max
a′

Q(s, a′)

• With the above,

Q(s, a) ≡ r(s, a) + γV ∗(δ(s, a))

can be rewritten as:

Q(s, a) ≡ r(s, a) + γmax
a′

Q(δ(s, a), a′),

thus getting rid of V ∗(δ(s, a)).

16

Learning the Q Function: Getting Rid of r and δ

In state s, execute action a, and observe immediate reward r and

resulting state s′. Then, simply use those r and s′ you got without

worrying about r(s, a) or δ(s, a).

• Initialize the estimate Q̂(s, a) to zero.

• Iteratively update, with estimated function Q̂(s, a):

Q̂(s, a)← r + γmax
a′

Q̂(s′, a′).

17

The Q Learning Algorithm

1. For each s, a, initialize the table entry Q̂(s, a) to zero.

2. Observe the current state s.

3. Do forever:

• Select action a and execute.

• Receive immediate reward r.

• Observe resulting state s′.

• Update table entry for Q̂(s, a) as:

Q̂(s, a)← r + γmax
a′

Q̂(s′, a′).

• s← s′

18

Q Learning Properties

• For deterministic Markov decision processes

• Q̂ converges toQ, when

– process is deterministic MDP,

– r is bounded (and non-negative), and

– actions are chosen so that every state-action pair is visited

infinitely often.

19

Example
s 1 s 2 s 3

s 4 s 5 s 6

Robo
73

66 81

100 s 1 s 2 s 3

s 5s 4 s 6

Robo
8166

90 100

(a) Initial state, in s1 (b) Next state, in s2

Arrows represent the Q̂ values.

• Move right (a = aright) and get immediate reward r = 0, with
discount rate γ = 0.9:

Q̂(s1, aright) ← r + γmax
a′

Q̂(s2, a
′
)

← 0 + 0.9 max{66, 81, 100}
← 90

• Note that in (b), the Q̂(s1, aright) value is updated from 73 to

90.

20

Exercise, from scratch

s 1 s 2 s 3

s 4 s 5 s 60
t=0

t=1 t=2 t=3
0 0 s 1 s 2 s 3

s 4 s 5 s 6

100

0
t=0

t=1 t=2 t=3
0

(a) Initial stateQ(s, a) = 0 (b) After one iteration

• Robot moved from s4 → s1 → s2 → s3.

• How do the variousQ(s, a) values get updated?

– For the first iteration?

– For the next iteration of s4 → s1 → s2 → s3?

21

Final learned Q̂

G
0

81

90 100

81
90 90

81

100

72

81

72
81

• For this domain, following actions that have maxQ(s, a) will

lead you to the goal through an optimal path.

22

Convergence of Q̂ to Q

• Properties (for non-negative rewards):

∀s, a, n : Q̂n+1(s, a) ≥ Q̂n(s, a)

∀s, a, n : 0 ≤ Q̂n(s, a) ≤ Qn(s, a)

• In general, convergence is guaranteed under three conditions:

1. The system is a deterministic MDP.

2. The reward is bounded (∀s, a) |r(s, a)| < c for a fixed

constant c.

3. All (s, a) pairs are visited infinitely often.

23

Proof of Convergence: Sketch

• The table entry Q̂(s, a) with the largest error must have its error

reduced by a factor of γ whenever it is updated.

• The updated Q̂(s, a) will be based on the error-prone Q̂(s, a)

only partially. The accurate immediate reward r used in theQ

update rule will help reduce the error.

• Proof: Define a full interval to be an interval during which each

table entry 〈s, a〉 is visited. During each full interval the largest

error in Q̂ table is reduced by factor of γ.

24

Convergence of Q

Let Q̂n be table after n updates, and ∆n be the maximum error in Q̂n ; that is

∆n = max
s,a
|Q̂n(s, a)−Q(s, a)|

For any table entry Q̂n(s, a) updated on iteration n+ 1, the error in the

revised estimate Q̂n+1(s, a) is

|Q̂n+1(s, a)−Q(s, a)| = |(r + γmax
a′

Q̂n(s
′
, a
′
))

−(r + γmax
a′

Q(s
′
, a
′
))|

= γ|max
a′

Q̂n(s
′
, a
′
)−max

a′
Q(s
′
, a
′
)|

≤ γmax
a′
|Q̂n(s

′
, a
′
)−Q(s

′
, a
′
)|

≤ γ max
s′′,a′

|Q̂n(s
′′
, a
′
)−Q(s

′′
, a
′
)|

|Q̂n+1(s, a)−Q(s, a)| ≤ γ∆n

25

Convergence in Q

• Main result:

|Q̂n+1(s, a)−Q(s, a)| ≤ γ∆n

• That is, error in the updated Q̂(s, a) is less than γ times the max

error in the table before the update.

• Note that γ < 1.0.

• Given initial ∆0, after k visits to 〈s, a〉, the error will be at most

γk∆0, and as k →∞, ∆k → 0.

26

Constructing the Policy from the Learned Q

1. Greedy: given state s, pick argmaxaQ(s, a).

• May cause the agent to exploit early successes and ignore

interesting possibilities.

• This would prevent the agent from visiting all (s, a) pairs

infinitely often.

2. Probabilistic: pick action ai with probability:

P (ai|s) =
kQ̂(s,ai)P
j k

Q̂(s,aj)

where k > 0 controls exploration (low k) vs. exploitation

(high k, greedy).

27

Updating Sequence

No specific order of (s, a) visit is necessary for convergence.

However, this can be inefficient.

1. Perform update in reverse order, once the goal has been reached.

2. Store past state-action transitions.

28

Nondeterministic Case

What if reward and next state are non-deterministic?

We redefine V,Q by taking expected values

V π(s) ≡ E[rt + γrt+1 + γ2rt+2 + . . .]

≡ E
" ∞X
i=0

γirt+i

#

Q(s, a) ≡ E[r(s, a) + γV ∗(δ(s, a))]

29

Nondeterministic Case

Q(s, a) can be redefined as follows:

Q(s, a) ≡ E[r(s, a) + γV ∗(δ(s, a))]

= E[r(s, a)] + γE[V ∗(δ(s, a))]

= E[r(s, a)] + γ
X
s′
P (s′|s, a)V ∗(s′)

Finally, rewriting it recursively, we get:

Q(s, a) = E[r(s, a)] + γ
X
s′
P (s′|s, a) max

a′
Q(s′, a′)

30

Nondeterministic Case: Learning

Using the original learning rule can result in oscillation in Q̂(s, a), and

thus no convergence. Taking a decaying weighted average can solve

the problem:

Q̂n(s, a)← (1−αn)Q̂n−1(s, a)+αn

»
r + γmax

a′
Q̂n−1(s′, a′)

–
where

αn =
1

1 + visitss(s, a)

and α determines how much the old and new Q̂ values will be used.

The αn formula above is known to allow convergence (there can be

other formulas).

31

Temporal Difference Learning

Q learning reduces the difference between Q̂ of a state and its immediate

successor (one-step look ahead). This can be generalized to include more

distant successors.

Q learning reduces the difference between Q̂ of a state

• Q̂(st, at) is estimated based Q̂(st+1, ·), where

st+1 = δ(st, at).

• One-step look ahead:

Q
(1)

(st, at) ≡ rt + γmax
a

Q̂(st+1, a)

• Two-step look ahead:

Q
(2)

(st, at) ≡ rt + γrt+1 + γ
2

max
a

Q̂(st+2, a)

• n-step look ahead:

Q
(n)

(st, at) ≡ rt+γrt+1+...+γ
(n−1)

rt+n−1+γ
n

max
a

Q̂(st+n, a)

32

Learning in TD
TD(λ) for learningQ using various lookaheads (0 ≤ λ ≤ 1):

Q
λ(st, at) ≡ (1−λ)

»
Q

(1)(st, at) + λQ
(2)(st, at) + λ

2
Q

(3)(st, at) + ...

–
which can be rewritten recursively:

Qλ(st, at)

= (1 − λ)
h
Q(1)(st, at) + λQ(2)(st, at) + λ2Q(3)(st, at) + ...

i
= ...

= rt + γ(1 − λ) maxa Q̂(st+1, a) + γλ
h
rt+1 + γ(1 − λ) maxa Q̂(st+2, a) + ...

i
= rt + γ

h
(1 − λ) maxa Q̂(st+1, a) + λQλ(st+1, at+1)

i

Note: there’s a typo in Mitchell’s book.

rt + γ

26664(1 − λ) maxa Q̂(st|{z}
typo

, a) + λQλ(st+1, at+1)

37775

33

TD(λ) Properties

Q
λ(st, at) = rt + γ

»
(1 − λ) max

a
Q̂(st+1, a) + λQ

λ(st+1, at+1)
–

• TD(0): same asQ(1).

• TD(1): only observed rt+i values are considered.

• WhenQ = Q̂,Qλ values are the same for any 0 ≤ λ ≤ 1.

34

TD(λ) Properties

• Sometimes converges faster thanQ learning

• Converges for learning V ∗ for any 0 ≤ λ ≤ 1 (Dayan, 1992)

• Tesauro’s TD-Gammon uses this algorithm

35

Q-learning

16Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Sarsa

17Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Eligibility Traces

 
 

   

      asaseasQasQ

asQasQr

ase

aass
ase

tttttt

tttttt

t

tt

t

,,,,,

,,

,
,







 













111

1

1

otherwise

 and if

18

 Keep a record of previously visited states (actions)

Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Sarsa (λ)

19Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Partially Observable States
 The agent does not know its state but receives an

observation p(ot+1|st,at) which can be used to infer a
belief about states

 Partially observable

MDP

21Lecture Notes for E Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press (V1.0)

Subtleties and Ongoing Research

• Replace Q̂ table with neural net or other generalizer.

• Handle case where state is only partially observable (partially

observable MDP, or POMDP).

• Design optimal exploration strategies.

• Extend to continuous action, state.

• Learn and use δ̂ : S ×A→ S.

• Relationship to dynamic programming.

36

