Neural Networks

Neural Networks

* Networks of processing units (neurons) with connections
(synapses) between them

o Threshold units
o Gradient descent

o Multilayer networks

Large number of neurons: 10%°
o Backpropagation

Large connectitivity: 10°
e Hidden layer representations

Parallel processing
o Example: Face Recognition

Distributed computation/memory

e Advanced topics Robust to noise, failures
e And, more.

Blue slides: from Mitchell. Turquoise slides: from Alpaydin.

BT

Biological Neurons and Networks

Understanding the Brain

e Levels of analysis (Marr, 1982)

e Neuron switching time ~ .001 second (1 ms)

: e Number of neurons ~ 1019
1. Computational theory

, o 104-5
2. Representation and algorithm e Connections per neuron ~ 10

3. Hardware implementation e Scene recognition time ~ .1 second (100 ms)
e Reverse engineering: From hardware to theory e 100 processing steps doesn’t seem like enough
® Parallel processing: SIMD vs MIMD [—] much parallel computation

Neural net: SIMD with modifiable local memory
Learning: Update by training/experience

Artificial Neural Networks Biologically Motivated (or Accurate) Neural Networks

e Spiking neurons

e Complex morphological models

e Detailed dynamical models

Many neuron-like threshold switching units (real-valued) e Connectivity either based on or trained to mimic biology

Many weighted interconnections among units o Focus on modeling network/neural/subneural processes

Highly parallel, distributed process e Focus on natural principles of neural computation

Emphasis on tuning weights automatically: New learning e Different forms of learning: spike-timing-dependent plasticity,

algorithms, new optimization techniques, new learning principles. covariance learning, short-term and long-term plasticity, etc.
3 4

When to Consider Neural Networks

s

Input is high-dimensional discrete or real-valued (e.g. raw sensor

input)
Output is discrete or real valued

Output is a vector of values

Possibly noisy data (a) ALVINN (b) http://yann.lecun.com

Long training time (may need occasional, extensive retraining) Examples:

Form of target function is unknown ® Speech synthesis

_ . o Handwritten character recognition (from yann.lecun.com).
Fast evaluation of learned target function

e Financial prediction, Transaction fraud detection (Big issue lately)
Human readability of result is unimportant
e Driving a car on the highway

Perceptrons

- O

n
Lif X ow. x:>0
0= =

-1 otherwise

1 ifwo4+wix1 +---+wnxn >0

—1 otherwise.

Sometimes we’ll use simpler vector notation:

. 1 ifd-Z>0
o(T) =
—1 otherwise.

Boolean Logic Gates with Perceptron Units

—1% —1@;1_0 -1t=-0.5
— — e
W2=1 W2=1

Russel & Norvig
input: {—1, 1}

® Perceptrons can represent basic boolean functions.

o Thus, a network of perceptron units can compute any Boolean

function.

What about XOR or EQUIV?

Hypothesis Space of Perceptrons

n
Lif X ow: x:>0
0= i=0 171

-1 otherwise

{0

e The tunable parameters are the weights wqg, w1, ..., Wn, so the
space H of candidate hypotheses is the set of all possible
combination of real-valued weight vectors:

H = {w|w € R("TD}

What Perceptrons Can Represent

11 Output = 1
-1 t
Slope = -W0
w0 _t] Wi
10 —\) " wl
W
u |

\1/ 10
Output=0fs

Perceptrons can only represent linearly separable functions.

e Output of the perceptron:
Wo X Ig + W71 X I1 —t > 0, thenoutputis 1
Wo X Igp + W1 X I1 —t <0, then outputis — 1

The hypothesis space is a collection of separating lines.

10

Geometric Interpretation

11 Output = 1
-1 t
Slope = -WO0
w0 t Wi
10 O/" Wl
W
11

Output=0fs

e Rearranging
Wo X Igp + W71 X I1 —t > 0, thenoutputis 1,

we get (if W1 > 0)

—Wy t
X Iop + —

I > ,
VT W

where points above the line, the output is 1, and -1 for those below the line.

Compare with

—Wy t
X+ —.
wit Wy

S
|

Limitation of Perceptrons

11 Output = 1

Slope = -WO0

w0 _t] W1
10 O/’ ™~ Wi

11 ‘

Output=0fs \ll

10

o Only functions where the -1 points and 1 points are clearly
separable can be represented by perceptrons.

o The geometric interpretation is generalizable to functions of n
arguments, i.e. perceptron with 7 inputs plus one threshold (or
bias) unit.

13

The Role of the Bias

_t o 10
Wi Slope = —W0
wi

e Without the bias (f = 0), learning is limited to adjustment of the
slope of the separating line passing through the origin.

e Three example lines with different weights are shown.

12

Generalizing to n2-Dimensions

n=/[abc]T

L_»(’_CMO’ZO)
y @/
x
http://mathworld.wolfram.com/Plane.html
e 7= (a,b,0), = (z,y,2),20 = (0, Y0, 20)-

e Equation of a plane: 71 - (£ — zp) = 0

e Inshort, ax + by + cz + d = 0, where a, b, c can serve as
the weight, and d = —17 - 2 as the bias.

e For n-D input space, the decision boundary becomes a
(n — 1)-D hyperplane (1-D I%?s than the input space).

Linear Separability Linear Separability (cont’d)

o
Il 11 11
10 ’?
Linearly—separable Not Linearly—separable (=1
I 10 10
AND OR XOR

e For functions that take integer or real values as arguments and

output either -1 or 1. e Perceptrons cannot represent XOR!

e Left: linearly separable (i.e., can draw a straight line between the e Minsky and Papert (1969)

classes).

e Right: not linearly separable (i.e., perceptrons cannot represent

such a function)

16

XOR in Detail Learning: Perceptron Rule

Iy I XOR » . 1
Slope = -W0 2
1 0 0 -1 t /(Wi .

O
0 1 1 ‘ |

n
2 1if X w:x:>0
0= Pl At
3 1 0 1 -1 otherwise
10 n
4 Output=0fs \l/ \l/

1 1 -1
e The weights do not have to be calculated manually.

xp=1

Wo X Ig + W1 x Iy —t > 0, then output is 1:
e We can train the network with (input,output) pair according to the

1 —t<0 — t2>0
following weight update rule:
2 Wi—-t>0 — Wi >t
3 Wo—t>0 — W()>t wz<_w7,+77(t_o)m7,
— <

4 Wo+ Wi —t<0 - Wo+Wist where 1) is the learning rate parameter.

2t < W, %1% t (from 2, 3, and 4), but ¢ > 0O (from 1), a o .
< . (_) T Wi < tiro), butt = U) e Proven to converge if input set is linearly separable and 7) is

contradiction. small

17 18

Learning in Perceptrons (Cont’d) Learning in Perceptron: Another Look

y////,r" p w=(a,b)
w; «— w; +n(t — o)z, ‘k o
e Whent = o, weight stays. — N+ .
e Whent = 1 and o = —1, change in weight is: - -
n(l—(=1))z; >0
. . - o e The perceptron on the left can be represented as a line shown on
if z; are all positive. Thus w - & will increase, thus eventually, .
. the right (why? see page 14).

output o will turn to 1.

e Whent — —1 and o = 1, change in weight is: e Learning can be thought of as adjustment of w0 turning toward the

input vector Z: W «— W + n(t — o)Z.
n(—=1—1)z; <0 . . .
e Adjustment of the bias ¢ moves the line closer or away from the
if z; are all positive. Thus w - & will decrease, thus eventually,

origin.
output o will turn to -1.
19 20
Another Learning Rule: Delta Rule Gradient Descent
® The perceptron rule cannot deal with noisy data. -
o The delta rule will find an approximate solution even when input ! S
° ‘\\\‘§\‘\\\‘\“‘\:‘:\\‘\‘\\‘“\\““““:‘ S
set is not linearly separable. . ““*::\“\:‘\\‘e‘\\\:-“g{:g:}g;{.:::::o.
e Use linear unit without the step function: o(Z) = w0 - . 2
e Want to reduce the error by adjusting w:
1 e Want to minimize by adjusting
E'(u_f) = — (td — Od)2 - - 1 2
2 dz: w: E(W) = 3 3 4ep(ta — 0a)
eD
e Note: the error surface is defined by the training data D). A
different data set will give a different surface.
e F(wp, w1) is the error function above, and we want to change
(wo, w1) to position under a low F.
21

22

Gradient Descent (Cont’d)

Gradient
OFE OF oF
VE[W] = ,
Owp ~ Owq Own,
Training rule:
AW = —nV E[w]
i.e.,
oF
Aw; = —n
8wi
23
Gradient Descent (Cont’d)
OF o 1
pue T Bwa 2o
_ 1 0 2
= 3 Z Tw(td — 0q)
= Z(td - od)—(td — T - ay)
] 8w1
OF
3 = > (ta—o0a)(—zia)
w;
d
Since we want Aw,; = —naw Aw; =00 (tg — 04)x; 4.

25

Gradient Descent (Example)

line 1

X R
0
002

e Gradient points in the maximum increasing direction.
o Gradient is prependicular to the level curve (uphill direction).

e F(wp, w1) is the error function above, so

VE = (gfo, gf), a vector on a 2D plane.

24

Gradient Descent: Summary
Gradient-Descent (training-examples, n)

Each training example is a pair of the form <f , t> , where X is the
vector of input values, and t is the target output value. 1) is the
learning rate (e.g., .05).

e |nitialize each w; to some small random value

e Until the termination condition is met, Do
— Initialize each Aw; to zero.
- Foreach (Z, t) intraining.examples, Do
* Input the instance ' to the unit and compute the output o
* For each linear unit weight w;, Do

Aw; «— Aw; +n(t — o)z,
— For each linear unit weight w;, Do

26

Gradient Descent Properties

Gradient descent is effective in searching through a large or infinite /1 :

e [contains continuously parameterized hypotheses, and

e the error can be differentiated wrt the parameters.
Limitations:

® convergence can be slow, and

e finds local minima (global minumum not guaranteed).

27

Standard and Stochastic Grad. Desc.: Differences

e In the standard version, error is defined over entire D.

e In the standard version, more computation is needed per weight
update, but) can be larger.

e Stochastic version can sometimes avoid local minima.

29

Stochastic Approximation to Grad. Desc.

Avoiding local minima: Incremental gradient descent, or stochastic
gradient descent.

e Instead of weight update based on all input in 1D, immediately
update weights after each input example:

Aw; = n(t — o)z,

instead of

Aw; =n Y (tq — o0a)wi,
deD

e Can be seen as minimizing error function

Ea() = %(td ~ og)2.

28

Summary

Perceptron training rule guaranteed to succeed if
e Training examples are linearly separable
e Sufficiently small learning rate)

Linear unit training rule using gradient descent

e Asymptotic convergence to hypothesis with minimum squared
error

e Given sufficiently small learning rate 0
e Even when training data contains noise

e Even when training data not separable by H

30

Exercise: Implementing the Perceptron Multilayer Networks

e |tis fairly easy to implement a perceptron.

® You can implement it in any programming language: C/C++, etc.

e Look for examples on the web, and JAVA applet demos.
e Differentiable threshold unit: sigmoid

1
1+ exp(—y)’

o(y) =
Interesting property: dzi(yy) =o(y)(1 —oa(y)).
e Output:

e Other functions:
exp(—2y) — 1

exp(—2y) + 1
31 32

tanh(y) =

Multilayer Networks and Backpropagation Error Gradient for a Sigmoid Unit

head hid) who'd hood e

) o 1
T w2 Z(td ~oa)’

de D

8’(1]1'

Q

2
tqg — og4
ow; ()

(ta — oa)

Il
N[~ N =
S\

~[
\v}
—~

~

u

|

Q

&
~

Q

+sigm(-x-y+1.13)-1)
054

i

(ta — oa) <— 2&)

50 Slputz aod 87’L8td
55 = — Z(td — 04)
7 Onety Ow;

I
~[1

(a) One output (b) Two hidden, one output

® Another example: XOR
33 34

Error Gradient for a Sigmoid Unit

From the previous page:

oFE Oog Onety
_— _ _ t, —
ow; Xd:() Onety Ow;
But we know:
Oog do(nety)
= = Od(l — Od)
Onety Onety
Onetq oW - Zg)
8wi awl ’
So:
OF
- = — Z (td — Od)Od(l — od)azi7d
Wi deD
35
The) Term
e For output unit:

6k «— Ok(l — Ok)l\(tk — Ok),

o’ (nety,) Error

o For hidden unit:

op — on(1—op) E Wih Ok

v k
€outputs
o' (nety) P — _
Backpropagated error

e Insum, ¢ is the derivative times the error.
o Derivation to be presented later.

37

Backpropagation Algorithm

Initialize all weights to small random numbers.

Until satisfied, Do

® For each training example, Do

1.

Input the training example to the network and compute the network
outputs

. For each output unit k

O — Ok(l — Ok)(tk — Ok)

For each hidden unit i

6n — on(1l = 0n) 2 kcoutputs WkhOk
Update each network weight w; ;

wj; +— wj; + Awj,; where

Awj; =ndjx;.

Note: w ;; is the weight from i to j (i.e., w; ;).

36

Derivation of Aw

e Want to update weight as:

0E

)
8?1)]'1'

iji = —n

where error is defined as:

Ba@) =3 3 (- o)

k€outputs

e Givennel; = > wj;xi,

0FE, B OE, Onet;
8wji n 8net]~ E)wji

e Different formula for output and hidden.

38

Derivation of Aw: Output Unit Weights

. 8Ed o 8Ed 8netj

From the previous page, dw;; . Omet; Ow;;
e First, calculate ;ﬁ:
netj

6Ed . 8Ed 80j
Onet; a 0oj Onet;

OBy 01 ST (b —on)?
80j 8oj 2 kEoutputs
0 1 5
— — Z(t: — 0.
do; 2(j = 05)
1 a(t; —o5)
= 2-(1 _Oj)—]aoj ’
= —(tj —oj)
39

Derivation of Aw: Output Unit Weights

From the previous page:

8Ed . 6Ed an
Onet; a do;j Onet;

. onet; o W:1.T
Since 8wjij = Zgwjjik E =g,
0F, _ OE, Onet;
8wji 8netj (‘?wji
= —(tj —05)0i(1 —0;) =z
R J J j .7/ 1

dj=errorxao’(net) input

41

= —(t; —0j)0;(1 —0j).

Derivation of Aw: Output Unit Weights

From the previous page,

dE, _ OE4 99j — —(t; —0;) 905 .
Onet; = 0Oo; Onet; J J/ Onet;
N loulate —22—: Since 0, = t;), and
® Next, calculate 557725 Since 0; = o(net;),an
/ _— . .
o'(net;) = 0;(1 — 0j),
0o;
= 0j(1-0j).
Onet

Putting everything together,

8Ed aEd 00,
S = ao amer. = (i —0i)oj(1 = 0j).
net; doj Onet;

40

Derivation of Aw: Hidden Unit Weights

. 6Ed . 8Ed 8n6tj o 6Ed .
Start with 81031 - anetj 8wﬂ - 8netj Ly
Onet; ke Downstream(s) Onety, Onet;
Onet
- Z _57““(9 tk.
k€ Downstream(j) net;
Onety, 0oj
- Z —Ok Do. Onet
k€ Downstream(j) 0j net;
00;
D S
k€ Downstream(j) net;
= Z —5kwkj Oj(l —Oj)
k€ Downstream(j) S—
o’ (net)
42

(1)

Derivation of Aw: Hidden Unit Weights

Finally, given
OF, OF, anetj 0F 4
= = €T;
3w_77; 67162‘3_7' 811]77 anet]— v
and SE
d
e, — > —Orwi; 05 (1 — 05),
J k€ Downstream(j) N—~—r
o/ (net)
OFE4
Awj; =Ny =nlo;(1 —o0j) Z Opwrj] T4
Wji —’—JREDownstreuTn(j)
o’ (net) ~
error
%)
43

Backpropagation: Properties
e Gradient descent over entire network weight vector.
o Easily generalized to arbitrary directed graphs.

e Will find a local, not necessarily global error minimum:

— In practice, often works well (can run multiple times with
different initial weights).

e Often include weight momentum
Awi,j (n) = 7753‘%1',]' + aAwi,j (n — 1).
o Minimizes error over training examples:
— Will it generalize well to subsequent examples?
e Training can take thousands of iterations — slow!

e Using the network after training is very fast.
45

Extension to Different Network Topologies

e Arbitrary number of layers: for neurons in layer 1m:

dr = or(1 — or) Z Wer08S.

s€layer m+41

e Arbitrary acyclic graph:

Or = or(1 — o) Z WeroS.

s€Downstream(r)

44

Representational Power of Feedforward Networks

e Boolean functions: every boolean function representable with two
layers (hidden unit size can grow exponentially in the worst case:
one hidden unit per input example, and “OR” them).

e Continous functions: Every bounded continuous function can be
approximated with an arbitrarily small error (output units are

linear).

e Arbitrary functions: with three layers (output units are linear).

46

H -Space Search and Inductive Bias

® The space is continuous, unlike decision tree or

general-to-specific concept learning algorithms.

e Inductive bias:

— Smooth interpolation between data points.

e [{-space = n-D weight space (when there are n weights).

47

Learned Hidden Layer Representations

Learning Hidden Layer Representations

Inputs Outputs
Input Hidden
Values
10000000 — .89 .04 .08 —
01000000 — .01 1 .88 —
00100000 — .01 .97 27 —
00010000 — .99 .97 .71 —
00001000 — .03 .05 .02 —
00000100 — .22 .99 .99 —
00000010 — .80 .01 .98 —
00000001 — .60 .94 .01 —

Output

10000000
01000000
00100000
00010000
00001000
00000100
00000010
00000001

49

Inputs Outputs
Input Output
4’ ,,l\ A w"»% 10000000 — 10000000
A AN
'0»“' "t‘ 01000000 — 01000000
Ollﬂ\ /‘\\\.
NN | 00100000 — 00100000
/ N\
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001
48

Learned Hidden Layer Representations

® Learned encoding is similar to standard 3-bit binary code.

e Automatic discovery of useful hidden layer representations is a
key feature of ANN.

o Note: The hidden layer represseontation is compressed.

Overfitting
Error versus weight updates (example 1) Error versus weight updates (example 2)
0.01 T T T 0.08 = T
I)
0.009 . Training set error A 007 + * Training set etror

Validation set error * ° Validation set error
0008 [1 0.06 ?m“‘it

©
ls,
0007 4 b 005 . 1
. 5 -
g oos W Sooe - 1
5] 2 .
0005 B 003 b0 u
0.004 1 002 ‘
0003 1 001 \“__

0.002

0
0 5000 10000 15000 20000 0 1000 2000 3000 4000 5000 6000
Number of weight updates Number of weight updates

e Error in two different robot perception tasks.
e Training set and validation set error.

e Early stopping ensures good performance on unobserved
samples, but must be careful.

e Weight decay, use of validation sets, use of k-fold
cross-validation, etc. to overcome the problem.

51

Recurrent Networks

® Sequence recognition.

output
e Store tree structure (next
4 de]ay S|Ide)
hidden e Can be trained with plain
/ \ backpropagation.
. e Generalization may not be
mput context

perfect.

53

Alternative Error Functions

Penalize large weights:

DD

deD k€outputs

E(w)

(tka — ora)” + 'YijQ‘i
i,J

Train on target slopes as well as values (when the slope is available):

2
(tkdiokd) +[1,

1
B =Y Y%
2 4epD

kEoutputs

5 <0t"”d -

JjEinputs 85”'(71
Tie together weights:
® e.g., in phoneme recognition network, or

e handwritten character recognition (weight sharing).

52

Recurrent Networks (Cont’d)

‘ ‘ stack ‘ ‘

‘ input ‘ ‘ stack ‘ ‘

® Autoassociation (intput = output)
® Represent a stack using the hidden layer representation.

e Accuracy depends on numerical precision.

54

90kq

o

)]

=

Learning Time

® Applications:

ime-Delay Neu ral Network

e Sequence recognition: Speech recognition
e Sequence reproduction: Time-series prediction
e Sequence association
® Network architectures
e Time-delay networks (Waibel et al., 1989)
e Recurrent networks (Rumelhart et al., 1986)

// i it R

P s

(b)

36 37.

Some Applications: NETtalk

Cutput units
{phoneme code)

Hidden units
3

€— T h i|s i e input

NETtalk: Sejnowski and Rosenberg (1987).
Learn to pronounce English text.
Demo

Data available in UCI ML repository

55

Backpropagation Exercise

URL: http://www.cs.tamu.edu/faculty/choe/src/backprop-1.6.tar.gz

Untar and read the README file:

gzip -dc backprop-l.6.tar.gz | tar

xvf -
Run make to build (on departmental unix machines).

Run . /bp conf/xor.conf etc.

57

NETtalk data

aardvark a-rdvark 1<<<>2<<0
aback xb@k-0>1<<0

abacus @bxkxs 1<0>0<0

abaft xb@ft 0>1<<0

abalone (@bxloni 2<0>1>0 O
abandon xb@ndxn 0>1<>0<0
abase xbes-0>1<<0

abash xb@S-0>1<<0

abate xbet-0>1<<0

abatis @bxti-1<0>2<2

e Word — Pronunciation — Stress/Syllable

e about 20,000 words

56

Backpropagation: Example Results

Backprop
0.25 R — &
02 AND B |
: XOR -

Error

0 15 20 25 30 35 40
10,000 Epochs

e Epoch: one full cycle of training through all training input patterns.

® OR was easiest, AND the next, and XOR was the most difficult to
learn.

o Network had 2 input, 2 hidden and 1 output unit. Learning rate
was 0.001.

58

Backpropagation: Example Results (cont’d)

Backprop

0.25

0 10 15 20 25 30 35 40
10,000 Epochs

I AND

Output to (0,0), (0,1), (1,0), and (1,1) form each row.

59

i B s s

(R oo

@.M“‘v T~
<

)/,

(/!," |/

(Le Cun et al, 1989)

27:

Backpropagation: Things to Try
e How does increasing the number of hidden layer units affect the
(1) time and the (2) number of epochs of training?

o How does increasing or decreasing the learning rate affect the

rate of convergence?

e How does changing the slope of the sigmoid affect the rate of

convergence?

e Different problem domains: handwriting recognition, etc.

R o A s

e

Weight Sharing

28

e GL L E

" Tuni ng the Network Size

Bayesian Learning

® Destructive ® Constructive ® Consider weights w; as random vars, prior p(w,)
* Weight decay: ® Growing networks p(W|X):p(X|(L);’(W) W,,., =argmaxlogp(w| X)
p(X w

log p(w | X)=log p(X | w)~+log p(w)+C

o) =T Tolw,) where plw)=c-exp| -7

" 20/22)
E'=E + Aw|’

* Weight decay, ridge regression, regularization

Dynamic Node Creation Cascade Correlation

(Ash, 1989) (Fahlman and Lebiere, 1989) cost=data-misfit + A complexity
More about Bayesian methods in chapter 14

30

Summary
® ANN learning provides general method for learning real-valued
functions over continuous or discrete-valued attributed.
® ANNSs are robust to noise.
e [is the space of all functions parameterized by the weights.

e [space search is through gradient descent: convergence to

local minima.
o Backpropagation gives novel hidden layer representations.
o OQverfitting is an issue.

o More advanced algorithms exist.

61

