Alpaydin Chapter 2, Mitchell Chapter 7

e Alpaydin slides are in turquoise.
— Ethem Alpaydin, copyright: The MIT Press, 2010.
— alpaydin@boun.edu.tr

— http://www.cmpe.boun.edu.tr/ ethem/i2ml2e

o All other slides are based on Mitchell.
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Learning a Class from Examples

e Class C of a “family car”
e Prediction: Is car x a family car?

e Knowledge extraction: What do people expect from a
family car?

® Qutput:
Positive (+) and negative (—) examples
® |Input representation:

X;: price, x, : engine power
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Computational Learning Theory (from Mitchell Computational Learning Theory
Chapter 7)

What general laws constrain inductive learning?
o Theoretical characterization of the difficulties and capabilities of

learning algorithms. We seek theory to relate:

® Questions: e Probability of successful learning

— Conditions for successful/unsuccessful learning e Number of training examples

— Conditions of success for particular algorithms

o Complexity of hypothesis space
e Two frameworks: ) ) )
e Accuracy to which target concept is approximated
— Probably Approximately Correct (PAC) framework: classes of
hypotheses that can be learned; complexity of hypothesis e Manner in which training examples presented

space and bound on training set size.

— Mistake bound framework: number of training errors made
before correct hypothesis is determined.
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Specific Questions
e Sample complexity: How many training examples are needed for
a learner to converge?

e Computational complexity: How much computational effort is
needed for a learner to converge?

o Mistake bound: How many training examples will the learner
misclassify before converging?

Issues: When to say it was successful? How are inputs acquired?

True Error of a Hypothesis

Instance space X

Where ¢
and / disagree

Definition: The true error (denoted errorp (h)) of
hypothesis h with respect to target concept ¢ and
distribution D is the probability that /A will misclassify an
instance drawn at random according to D.

errorp(h) = xi%[c(x) # h(x)]

Sample Complexity

How many training examples are sufficient to learn the target concept?

1. If learner proposes instances, as queries to teacher

e Learner proposes instance x, teacher provides ¢(x)

2. If teacher (who knows c) provides training examples

e teacher provides sequence of examples of form (x, ¢(x))

3. If some random process (e.g., nature) proposes instances

e instance x generated randomly, teacher provides ¢()

Two Notions of Error

Training error of hypothesis h with respect to target concept ¢
e How often h(x) # c(x) over training instances
True error of hypothesis h with respect to ¢
e How often h(x) # c(x) over future random instances
Our concern:
e Can we bound the true error of A given the training error of h?

e First consider when training error of h is zero (i.e., h € VSHJ))



Exhausting the Version Space

Hypothesis space H

. error=.3
error=.1 r=4

r=2

. error=.2
error=.3 r=3

r=.1

(r = training error, error = true error)

Definition: The version space V' .Sy p is said to be
e-exhausted with respect to ¢ and D, if every hypothesis h
in V.S, p has error less than € with respect to ¢ and D.

(Vh € VSH p)errorp(h) < e

Proof of c-Exhasting Theorem

Theorem: Prob. of V'S, p not being e-exhausted is < |H|e™ “".
Proof:

e leth; € H (1 = 1..k) be those that have true error greater than € wrt
etk < |H).

e We fail to e-exhaust the VS iff at least one h; is consistent with all m
sample training instances (note: they have true error greater than €).

® Prob. of a single hypothesis with error > € is consistent for one random
sample is at most (1 — ¢).

e Prob. of that hypothesis being consistent with 1, samplesis (1 — €)"".

e Prob. of at least one of k hypotheses with error > ¢ is consistent with m
samplesis k(1 — ¢)"".

e Sincek < |H|,andfor0 < e < 1,(1 —¢€) <e ©:
k(1 —e)™ <|H[(1—¢e)™ < [H[e” ™™
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How many examples will c-exhaust the VS?

Theorem: [Haussler, 1988].

If the hypothesis space H is finite, and [ is a sequence of m > 1
independent random examples of some target concept c, then for
any 0 < e < 1, the probability that the version space with respect
to H and D is not e-exhausted (with respect to c¢) is less than

| H | e —E€EmMm
This bounds the probability that any consistent learner will output a hypothesis h
with error(h) > e
If we want this probability to be below &
|Hle ™ < §

then 1
m > = (In|H| + In(1/5))
€

PAC Learning

Consider a class C' of possible target concepts defined over a set of
instances X of length n, and a learner L using hypothesis space H.

Definition: C' is PAC-learnable by L using H if for all

¢ € C, distributions D over X, e suchthat 0 < € < 1/2,
and 0 suchthat 0 < 6 < 1/2,

learner L will with probability at least (1 — &) output a
hypothesis h € H such that errorp(h) < ¢, in time that
is polynomial in 1 /¢, 1/8, n and size(c).
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Agnostic Learning

So far, we assumed that ¢ € H. What if it is not the case?
Agnostic learning setting: don’t assume ¢ € H

e What do we want then?

— The hypothesis h that makes fewest errors on training data
o What is sample complexity in this case?
1
m > — (In|H| +In(1/5))
2¢2

derived from Hoeffding bounds:

Prlerrorp(h) > errorp(h) + €] < e—2me’
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Three Instances Shattered

Instance space X

Each closed contour indicates one dichotomy. What kind of hypothesis

space H can shatter the instances?
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Shattering a Set of Instances

Definition: a dichotomy of a set .S is a partition of S into

two disjoint subsets.

Definition: a set of instances S is shattered by hypothesis
space H if and only if for every dichotomy of S there exists
some hypothesis in H consistent with this dichotomy.
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The Vapnik-Chervonenkis Dimension

Definition: The Vapnik-Chervonenkis dimension,

V' C(H), of hypothesis space H defined over instance
space X is the size of the largest finite subset of X
shattered by H. If arbitrarily large finite sets of X can be
shattered by H, then VC'(H) = oc.

Note that | /| can be infinite, while V' C'( H ) finite!
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VC Dim. of Linear Decision Surfaces

@ ®)

e When H is a set of lines, and S a set of points, VC'(H) = 3.

e (a) can be shattered, but (b) cannot be. However, if at least one
subset of size 3 can be shattered, that’s fine.

e Set of size 4 cannot be shattered, for any combination of points
(think about an XOR-like situation).
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Sample Complexity from VC Dimension

How many randomly drawn examples suffice to e-exhaust VSH,D
with probability at least (1 — §)?

m > %(4 logy(2/6) + 8V C(H)logy(13/€))

V' C(H) is directly related to the sample complexity:
e More expressive [{ needs more samples.

e More samples needed for H with more tunable parameters.
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VC Dimension: Another Example
S = {3.1, 5.7}, and hypothesis space includes intervals
a<x<b.
e Dichotomies: both, none, 3.1, or 5.7.
e Are there intervals that cover all the above dichotomies?

What about S = x, x1, x2 for an arbitrary ; ? (cf. collinear points).

17

Mistake Bounds

So far: how many examples needed to learn?

What about: how many mistakes before convergence?

e This is an interesting question because some learning systems
may need to start operating while still learning.

Let’s consider similar setting to PAC learning:
e Instances drawn at random from X according to distribution D.

e Learner must classify each instance before receiving correct
classification from teacher.

e Can we bound the number of mistakes learner makes before
converging?
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Optimal Mistake Bounds

Let M 4 (C') be the max number of mistakes made by algorithm A to

learn concepts in C'. (maximum over all possible ¢ € C', and all

possible training sequences)

My (C) = ErleagMA(c)

Definition: Let C' be an arbitrary non-empty concept class. The
optimal mistake bound for C, denoted Opt(C'), is the minimum
over all possible learning algorithms A of M 4 (C').

Opt(C) =

min Ma(C)

A€learning algorithms

R
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Use the simpler one because

Simpler to use

(lower computational
complexity)

Easier to train (lower
space complexity)

Easier to explain

(more interpretable)
Generalizes better (lower
variance - Occam’s razor)
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Noise and Model Complexity
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Engine power

Mistake Bounds and VC Dimension

Littlestone (1987) showed:

VC(C) < Opt(C) < My aiving(C) < logs(|C])

reject

Sports car

Family car
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Luxury sedan
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Model Selection & Generalization
X= {xt,rt}ivzl _________________________ (x)= XJLW SN S 1 ® Learning is an ill-posed problem data is not sufficient to
FeR PR g _____ L s 0 S — find a unique solution
t t LR « i g(x)=wyx? +wix+w,  © The need for inductive bias assumptions about F{
r =f(X )+8 [ R -
) _ o * Generalization: How well a model performs on new data
" SR | e Overfitting: J{ more complex than C or f
E(g]| X):—Z[rf _g(xt )]2 """"""""""""""" =3O ] e Underfitting: FH less complex than C or f
Nt 7OV e ]
1 &y, t A ]
E(Wl,W0 | X)— —Z[r — (Wlx +Ww, )] R SN SR S |
N= |
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Triple Trade-Off Cross-Validation
* There s a trade-off between three factors (Dietterich, * To estimate generalization error, we need data unseen
2003): during training. We split the data as
1. Complexity of H, ¢ (H), e Training set (50%)
2. Training set size, N, e Validation set (25%)

3. Generalization error, E, on new data
O AsNT, Ed
00 Asc (H)T, first E4 and then ET
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e Test (publication) set (25%)
® Resampling when there is few data
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imensions of a Supeisd/

Learner

1. Model: g(x|6)

2. Loss function: E(9|X):ZL(rt,g(Xt |9))

3. Optimization procedure:

o*=argmi nE(@| X)
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