
633-600 Machine Learning

• Instructor: Yoonsuck Choe

– Contact info: HRBB 322B, 845-5466, choe@tamu.edu

• TA: Wen Li

– Contact info: wen.li@neo.tamu.edu

• Course web page: http://courses.cs.tamu.edu/choe/13spring/633

1

Textbook

• Ethem Alpaydin (2010) “Introduction to Machine Learning”, 2nd

edition. MIT Press.

• Book webpage: http://www.cmpe.boun.edu.tr/˜ethem/i2ml2e/

• Tom M. Mitchell (1997) “Machine Learning”, McGraw-Hill.

• Book webpage: http://www.cs.cmu.edu/˜tom/mlbook.html

• Text and figures, etc. will be quoted from the textbook without

repeated acknowledgment. Instructor’s perspective will be

indicated by “YC” where appropriate.

2

Course Info

• Grading, academic policy, students with disabilities, lecture notes,

computer accounts, programming languages.

• See course web page.

3

Relation to Other Courses

Some overlaps:

• Neural Networks: perceptrons, backpropagation, etc.

• Pattern analysis: Bayesian learning, instance-based learning

• Artificial intelligence: decision trees (in some courses)

• Statistics: hypothesis testing

• (Relatively) unique to this course: computational learning theory,

genetic algorithms, reinforcement learning, decision trees (in

depth treatment)

4

ML Overview (I)

• How can machines (computers) learn?

How can machines improve automatically with experience?

• How can machines learn from data?

• Benefits:

– Improved performance

– Automated optimization

– New uses of computers

– Reduced programming (YC)

– Insights into human learning and learning disabilities

5

ML Overview (II)

• Current status: Yet unsolved problem.

– Theoretical insights emerging.

– Practical applications.

– Huge data volume demands ML, and provides opportunity to

ML (datamining).

• State of the art:

– speech recognition

– medical predictions

– fraud detection

– drive autonomous vehicles (highway and desert)

– board games (backgammon, chess)

– theoretical bounds on error, number of inputs needed, etc.

6

ML Overview (III)

Multidisciplinary roots:

• AI

• probability and statistics

• computational complexity theory

• control theory

• information theory

• philosophy

• psychology

• neurobiology

7

Well-Posed Learning Problem

A program is said to learn from

• experienceE with respect to

• task T and

• performance measure P ,

• P in T increase withE.

Examples: Playing checkers, Handwriting recognition, Robot driving,

etc.

Goal of ML: “define precisely a class of problems that encompasses

interesting forms of learning [but not all: YC], to explore algorithms that

solve such problems, and to understand the fundamental structure of

learning problems and processes” (Mitchell, 1997)

8

Designing a Learning System (I)

Training experience:

• direct vs. indirect (problem of credit assignment)

• degree of control over training examples (teacher-dependent or

learner-generated)

• closeness of training example distribution to true distribution over

which P is measured: in many cases, ML algorithms assume that

both distributions are similar, which may not be the case in

practice.

9

Designing a Learning System (II)

Remaining design choices:

• Exact type of knowledge to be learned.

• A representation for this target knowledge.

• A learning mechanism.

• functional/operational principle giving rise to the learning

mechanism (YC)

10

Design: Target Function (I)

Type of knowledge to be learned: for example, we want to learn best

move in a board game.

• Can represent as a function (B: board states,M : moves):

ChooseMove : B →M,

but it is hard to learn directly.

11

Design: Target Function (II)

• Another function (B: board states,R: real numbers):

V : B →R,
which gives the evaluation of each board state.

– V (b = win) = 100

– V (b = lose) = −100

– V (b = draw) = 0

– V (b = otherwise) = V (b′), where b′ is the best final

board state that can be reached from b.

– However, this is not efficiently computable, i.e., it is a

nonoperational definition.

– Goal of ML is to find an operational description of V ,

however, in practice, an approximation is all we can get.

12

Design: Representation for Target Function

Given an ideal target function V , we want to learn an approximate

function V̂ :

• Trade-off between rich and parsimonious representation.

• Example: V̂ as a linear combination of number of pieces, number

of particular relational situations in the board (e.g., threatened),

etc. (represented as xi) in board configuration b:

V̂ (b) = w0 +

nX
i=1

wixi,

wherewi are the weight values to be learned.

• Advantage of the above representation: reduction of scope (or

dimensionality) from the original problem.

13

Design: Function Approximation Algorithm

Given board state and true V , we want to learn the weightswi that

specify V̂ .

• Start with a set of a large number of input-target pairs

< b, Vtrain(b) >.

• Problem: cannot come up with a full set of< b, Vtrain(b) >

pairs.

• Solution: If Vtrain(b) is unknown, set it to the estimated V̂ of

its successor board state:

Vtrain(b) = V̂train(Successor(b)).

14

Design: Adjusting Weights (I)

Last component in defining a learning algorithm: adjustment of

weights.

• Want to learn weightswi that best fit the set of training samples

{< b, Vtrain(b) >}.
• How to define best fit? Once we have V̂ we can calculate all

V̂ (b) for all b in the training set, and calculate the error.

E ≡
X

<b,Vtrain(b)>∈training set

“
Vtrain(b)− V̂ (b)

”2

• How to reduceE?

15

Design: Adjusting Weights (II)

Least Mean Squares (LMS) learning rule: For each training example

< b, Vtrain(b) >,

• Use the current weights to calculate V̂ (b).

• For each weightwi, update it as

wi ← wi + η(Vtrain(b)− V̂ (b))xi,

where η is a small learning rate constant.

• The error Vtrain(b)− V̂ (b) and the input xi both contribute to

the weight update.

16

Final Design

Putting together the system (checker player):

• Performance system: input = problem, output = solution trace =

game history (using what is learned so far)

• Critic: input = solution trace, output = training examples

(estimated Vtrain(b))

• Generalizer: input = training examples, output = estimated

hypothesis V̂ (i.e., learned weightswi)

• Experiment generator: input = hypothesis V̂ , output = new

problem (new initial condition, to explore particualar regions)

17

Alternatives (I)

• Training experience: against experts, against self, table of correct

moves, ...

• Target function: board→ move, board→ value, ...

• Representation of target function: polynomial, linear function of

small number of features, artificial neural network

• Learning algorithm: gradient descent, linear programming, ...

18

Alternatives (II)

• Memorize (instance-based learning)

• Spawn a population and make them compete with each other

(genetic algorithms)

• Analyze and reason about things

19

Perspectives on ML: Hypothesis Space Search

• Useful to think of ML as searching a very large space of

possible hypotheses to best fit the data and the learner’s prior

knowledge.

• For example, the hypothesis space for V̂ would be all possible

V̂ s with different weight assignment.

• Useful concepts regarding hypothesis space search:

– Size of hypothesis space

– Number of training examples available/needed.

– Confidence in generalizing to new unseen data.

20

Issues in ML

• What algorithms exist for generalizable learners given specific

training set? Requirements for convergence? Which algorithms

are best for a particular domain?

• How much training data needed? Bounds on confidence, based

on data size? How long to train?

• Use of prior knowledge?

• How to choose best training experience? Impact of the choice?

• How to reduce ML problem to function approximation?

• How can learner alter the representation itself?

21

Classification of learning algorithms (YC)

What to do with given data? What kinds of data are given?

• Supervised learning: input-target pairs given.

• Unsupervised learning: only input distribution is given.

• Reinforcement learning: sparse reward signal is given for action

based on sensory input; environment-altering actions.

22

Broader questions (YC)

• Can machines themselves formulate their own learning tasks?

– Can they come up with their own representations?

– Can they come up with their own learning strategy?

– Can they come up with their own motivation?

– Can they come up with their own questions/problems?

• What if the machines are faced with multiple, possibly conflicting

tasks? Can there be a meta learning algorithm?

• What if performance is hard to measure (i.e., hard to quantify, or

even worse, subjective)?

• Lesson: think outside the box; question the questions themselves.

23

