
CPSC 633-600 Spring 2013 (Total 100 points)
Machine Learning

Homework 1
See the course web page for the due date and submission info.

Instructor: Yoonsuck Choe

1 Supervised Learning

Problem 1 (Written: 10 pts):

Theorem: [Haussler, 1988].

If the hypothesis spaceH is finite, andD is a sequence ofm ≥ 1 independent random examples
of some target concept c, then for any 0 ≤ ε ≤ 1, the probability that the version space with
respect to H and D is not ε-exhausted (with respect to c) is less than

|H|e−εm

This bounds the probability that any consistent learner will output a hypothesis h with error(h) ≥ ε
If we want this probability to be below δ

|H|e−εm ≤ δ (1)

then
m ≥ 1

ε
(ln |H|+ ln(1/δ)) (2)

(1) Show how we can get to Eq. 2 from Eq. 1. Show all the steps.

(2) Discuss how m increases or decreases as ε and δ change.

Mark one choice Discuss the implications
If ε increases then m will (↑, ↓)

If δ increases then m will (↑, ↓)

Given a fixedm,
if δ decreases

then ε can (↑, ↓)

1

Problem 2 (Written: 5 pts):

When V C(H) increases,

(1) Representational power of the hypothesis (increases, decreases).

(2) Sample complexity (increases, decreases).

(3) Explain why the two, representational power and sample complexity, pose a trade-off.

2 Perceptrons

Problem 3 (Written: 10 pts): Consider the data set below.

(1) Can a single perceptron learn the following training set without error?

(2) Can a two layer perceptrons learn the following training set without error? If so, what is the minimum
number of hidden units needed to achieve this? If not, explain why.

x y class
--- --- ----
0 0 -1
0 1 -1
0 2 -1
0 3 -1
0 4 -1
1 0 -1
1 1 -1
1 2 +1
1 3 -1
1 4 -1
2 0 -1
2 1 +1
2 2 +1
2 3 +1
2 4 -1
3 0 -1
3 1 +1
3 2 +1
3 3 +1
3 4 -1
4 0 -1
4 1 -1
4 2 -1
4 3 -1
4 4 -1

2

3 Gradient Descent

Problem 4 (Written: 5 pts): Given an error function

E(w) = (w − 1)(w − 2)(w − 3)(w − 7),

find:
∂E(w)
∂w

.

Note that this is simply an ordinary derivative dE
dw .

Problem 5 (Written: 5 pts): How many minima doesE(w) have? You can draw a rough plot from w = 0
to 7.

Problem 6 (Written: 5 pts): With ∂E(w)
∂w calculated above, if you want to adjust w to minimize E(w),

what should ∆w be? Write the answer as a polynomial function of w. (This is trivial, given the answer to
problem 4.)

Problem 7 (Program: 15 pts): Using the gradient found above, write a short program to

1. Initialize w to a particular value w0.

2. Repeat
w ← w + η∆w

until difference in successive error values E(w) is less than 0.001. Set η = 0.01.

Experiments: Run your program with w0 ∈ {0.5, 1.5, 2.3, 2.8, 4, 7}, and report the following:

1. Plot the function E(w) in the background, and plot the changing (w,E(w)) positions as points in the
same plot. See figure 1.

2. Report how many iterations were needed for E(w) to reach the minima.

w0

(wt,E(w t))

E(w)

w

E

x

x
xxxxxxxxxx

Figure 1: Gradient Descent. Note that E(w) shown here in the figure is different from the one in problem 2. This is
just an example.

Problem 8 (Program: 10 pts): Add momentum to the previous program and repeat the experiment, with
w0 = 0.5. Start with momentum rate of 0.1, and increase it by 0.1 until you can reach the global minumum.
Report the momentum rate value that helped you get over the local mimimum.

Repeat the same experiment with w0 = 2.3, and report your finding. The behavior will be different from
the first experiment with w0 = 0.5. Explain why you think this is the case.

3

Problem 9 (Written: 5 pts): Using chain rule, find the gradient for the function σ(E(w)) where σ(x) =
1/(1 + exp(−x)) and E(w) is defined above:

dσ(E(w))
dw

.

Write the answer as a function of w. Hint: dσ(x)
dx = σ(x)(1− σ(x)).

Problem 10 (Written: 10 pts): Consider these two functions of two variables:

E1(w1, w2) = w 2
1 + w 2

2 (3)

E2(w1, w2) = w 2
1 +

w 2
2

2
(4)

1. Illustrate by hand (or use Octave/Matlab) the contour plot of these two functions. Make the x and y
range go from -10 to 10, and draw contour lines for Ei(w1, w2), i = 1, 2 values in the increment of
20.

2. Derive the gradient∇E1(w1, w2) and ∇E2(w1, w2).

3. Pick the contour line at E value (z-axis value) of 40, and draw the gradient vector at 8 different
points on that contour (evenly spaced around the contour), based on your derived ∇E1(w1, w2) and
∇E2(w1, w2).

4. Starting from (5, 7), manually perform (you may use a calculator/program) the first four steps of
gradient descent (try minimizing Ei while adjusting w1 and w2), with learning rate η = 0.1, so that

∆~w = −η∇Ei(w1, w2), for i = 1, 2,

where ~w = (w1, w2). Illustrate your results and show the calculated values of ~w over time.

5. Discuss how the behavior differs for the two different functions.

4 Backpropagation

Problem 11 (Program: 10 pts): Implement backprop (or use matlab neural network toolbox, etc.) and
train it on the data set shown in Problem 3. Experiment with different network configurations:

(1) Single layer

(2) Two layer: 2 hidden units, 3 hidden units, ...

(3) Analyze the weights and plot the decision boundary (you’ll get a bunch of line equations). Or, alterna-
tively, you can plot the activation value of each hidden or output unit (if you had 3 hidden and 1 output
unit, you will need to show 4 such plots in total). For the input, generate a mesh grid of finer grain than
the grid in Problem 3 data set (see Octave/Matlab example below).

This shows how to create the input vectors in a
systematic manner. The example is shown in Octave.
"octave:1>" etc. is the command prompt.

4

octave:1> [x,y] =meshgrid([0:2])
x =

0 1 2
0 1 2
0 1 2

y =

0 0 0
1 1 1
2 2 2

octave:2> input_data = [vec(x),vec(y)]
input_data =

0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2

For actual poltting, use the following so that you have a finer grid.

octave:3> [x,y] =meshgrid([0:0.1:2])

Now, [x,y] will go in as the input, and suppose you got it
back in "output".
Assume all vectors are column vectors.
Also, the "activate(...)" function is not well defined here.

octave:4> output = activate([x,y], weight_matrix, ...);

If the output was in range [0..1], you can find the index for the
outputs that exceed a certain threshold (here 0.5) and those that
do not.

octave:5> pos_idx = find(output>=0.5);
octave:6> neg_idx = find(output<0.5);

Now, you can plot the partitions.

octave:7> plot(xy(pos_idx,1),xy(pos_idx,2),"go",

5

xy(neg_idx:1),xy(neg_idx,2),"rx");

"go" means "green" and "o" shaped markers.
"rx" means "red" and "x" shaoed markers.

Examples of the above plot are shown below. These are from hidden unit activations that learned the XOR
function.

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Software downloads

You may use one of the following (first and second option recommended):

• C++ version: fully functional. http://courses.cs.tamu.edu/choe/13spring/633/
src/backprop-1.6.tar.gz

• Octave version: key lines missing (by design). You need to fill in about 3 lines. http://courses.
cs.tamu.edu/choe/13spring/633/src/bp.m

• Implement from scratch (whatever language).

• Matlab Neural Networks Toolbox.

6

http://courses.cs.tamu.edu/choe/13spring/633/src/backprop-1.6.tar.gz
http://courses.cs.tamu.edu/choe/13spring/633/src/backprop-1.6.tar.gz
http://courses.cs.tamu.edu/choe/13spring/633/src/bp.m
http://courses.cs.tamu.edu/choe/13spring/633/src/bp.m

	Supervised Learning
	Perceptrons
	Gradient Descent
	Backpropagation

