Search and Game Playing

Overview

- Search problems: definition
- Example: 8-puzzle
- General search
- Evaluation of search strategies
- Strategies: breadth-first, uniform-cost, depth-first
- More uninformed search: depth-limited, iterative deepening, bidirectional search

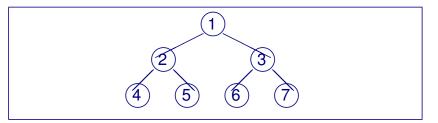
2

Emacs Tips

1

- multiple windows in emacs (up/down): C-x 2
- multiple windows in emacs (left/right): C-x 3
- switch between buffers: C-x b
- reduce to one window: C-x 1
- navigation between windows in emacs: C-x o
- increasing height of window in emacs: C-x ^
- killing current window in emacs: C-x k

Search Problems: Definition



Search = < initial state, operators, goal states >

- Initial State: description of the current situation as given in a problem
- Operators: functions from any state to a set of successor (or neighbor) states
- Goal: subset of states, or test rule

Variants of Search Problems

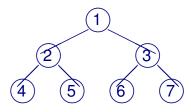
Search = < state space, initial state, operators, goal states >

• State space: set of all possible states reachable from the current initial state through repeated application of the operators (i.e. path).

Search = < initial state, operators, goal states, path cost >

• Path cost: find **the best** solution, not just **a** solution. Cost can be many different things.

Types of Search



- Uninformed: systematic strategies (Chapter 3)
- Informed: Use domain knowledge to narrow search (Chapter 4)
- Game playing as search: minimax, state pruning, probabilistic games (Chapter 5).

6

Operators

Function from state to subset of states

- drive to neighboring city
- place piece on chess board
- add person to meeting schedule
- slide tile in 8-puzzle

Characteristics

- often requires instantiation (fill in variables)
- encode constraints (only certain operations are allowed)
- generally discrete: continuous parameters \rightarrow infinite branching

Search State

5

State as Data Structure

- examples: variable assignment, properties, order in list, bitmap, graph (vertex and edges)
- captures all possible ways world could be
- typically static, discrete (symbolic), but doe snot have to be

Choosing a Good Representation

- concise (keep only the relevant features)
- explicit (easy to compute when needed)
- embeds constraints

Goals: Subset of states or test rules

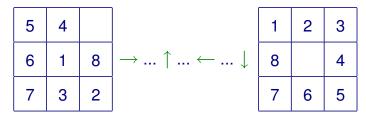
Specification:

- set of states: enumerate the eligible states
- partial description: e.g. a certain variable has value over x.
- constraints: or set of constraints. Hard to enumerate all states matching the constraints, or very hard to come up with a solution at all (i.e. you can only verify it; P vs. NP).

Other considerations:

• space, time, quality (exact vs. approximate trade-offs)

An Example: 8-Puzzle



- State: location of 8 number tiles and one blank tile
- Operators: blank moves left, right, up, or down
- Goal test: state matches the configuration on the right (see above)
- Path cost: each step cost 1, i.e. path length, or search tree depth

Generalization: 15-puzzle, ..., $(N^2 - 1)$ -puzzle

9

8-Puzzle: Example

2

6

3

4

5

									_
	2	3		1	2	3		1	
1	8	4	\downarrow		8	4	\rightarrow	8	
7	6	5		7	6	5		7	

Possible state representations in LISP (0 is the blank):

- (0 2 3 1 8 4 7 6 5)
- ((0 2 3) (1 8 4) (7 6 5))
- ((0 1 7) (2 8 6) (3 4 5))
- or use the make-array, aref functions.

How easy to: (1) compare, (2) operate on, and (3) store (i.e. size).

10

8-Puzzle: Search Tree

	2	3
1	8	4
7	6	5

3

4

5

2

8

6

. . .

↓ 7

2

6

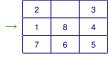
GOAL!

8

3

4

5



3

8

6

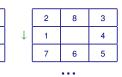
. . .

4

5

2

1



Goal Test

General Search Algorithm

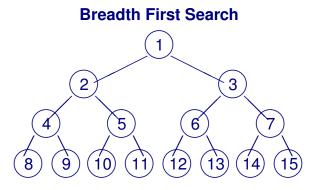
As simple as a single LISP call:

- * (defvar *goal-state* '(1 2 3 8 0 4 7 6 5)) *GOAL-STATE*
- * (equal *goal-state* '(1 2 3 8 0 4 7 6 5)) T

Pseudo-code:

```
function General-Search (problem, Que-Fn)
node-list := initial-state
loop begin
    // fail if node-list is empty
    if Empty(node-list) then return FAIL
    // pick a node from node-list
    node := Get-First-Node(node-list)
    // if picked node is a goal node, success!
    if (node == goal) then return as SOLUTION
    // otherwise, expand node and enqueue
    node-list := Que-Fn(node-list, Expand(node))
loop end
```

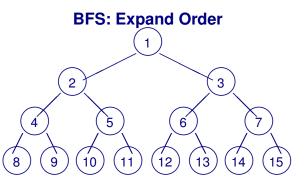
14



- node visit order (goal test): 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
- queuing function: enqueue at end (add expanded node at the end of the list)

Evaluation of Search Strategies

- time-complexity: how many nodes expanded so far?
- space-complexity: how many nodes must be stored in node-list at any given time?
- completeness: if solution exists, guaranteed to be found?
- optimality: guaranteed to find the best solution?



Evolution of the queue (**bold**= expanded and added children):

1. [1] : initial state

...

- 2. [2][3] : dequeue 1 and enqueue 2 and 3
- 3. [3] [4][5] : dequeue 2 and enqueue 4 and 5
- 4. [4] [5] [6][7] : all depth 3 nodes

8. [8] [9] [10] [11] [12] [13] **[14][15]** : all depth 4 nodes 17

Uniform Cost

BFS with expansion of lowest-cost nodes: path cost is g(node).

• BFS: g(n) = Depth(node)

BFS: Evaluation

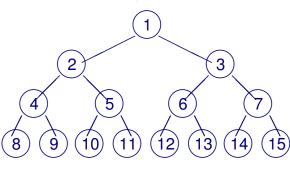
branching factor b, depth of solution d:

- complete: it will find the solution if it exists
- time: $1 + b + b^2 + ... + b^d$
- space: ${\cal O}(b^{d+1})$ where d is the depth of the shallowest solution
- space is more problem than time in most cases (p 75, figure 3.12).
- time is also a major problem nonetheless (same as time)

Depth First Search 1 3 4 5 6 7 8 9 10 11 12 13 14 15

- node visit order (goal test): 1 2 4 8 9 5 10 11 3 6 12 13 7 14 15
- queuing function: enqueue at left (stack push; add expanded node at the beginning of the list)

DFS: Expand Order



Evolution of the queue (**bold**=expanded and added children):

- 1. [1] : initial state
- 2. [2][3] : pop 1 and push expanded in the front
- 3. [4][5] [3] : pop 2 and push expanded in the front
- 4. [8][9] [5] [3] : pop 4 and push expanded in the front

21

Implementation

- Use of stack or queue : explicit storage of expanded nodes
- Recursion : implicit storage in the recursive call stack

DFS: Evaluation

branching factor b, depth of solutions d, max depth m:

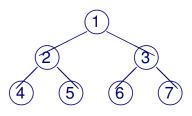
- incomplete: may wander down the wrong path
- time: $O(b^m)$ nodes expanded (worst case)
- space: O(bm) (just along the current path)
- good when there are many shallow goals
- bad for deep or infinite depth state space

22

Key Points

- Description of a search problem: initial state, goals, operators, etc.
- Considerations in designing a representation for a state
- Evaluation criteria
- BFS, UCS, DFS: time and space complexity, completeness
- Differences and similarities between BFS and UCS
- When to use one vs. another
- Node visit orders for each strategy
- Tracking the stack or queue at any moment

Depth Limited Search (DLS): Limited Depth DFS



• node visit order for each depth limit *l*:

1 (l = 1); 1 2 3 (l = 2); 1 2 4 5 3 6 7 (l = 3);

- queuing function: enqueue at front (i.e. stack push)
- push the depth of the node as well: (<depth> <node>)

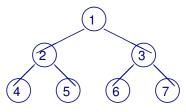
25

DLS: Evaluation

branching factor b, depth limit l, depth of solution d:

- complete: if $l \ge d$
- time: $O(b^l)$ nodes expanded (worst case)
- space: O(bl) (same as DFS, where l = m (m: max depth of tree in DFS)
- good if solution is within the limited depth.
- non-optimal (same problem as in DFS).

DLS: Expand Order



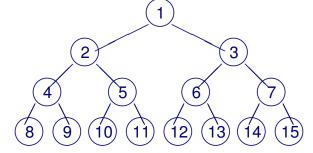
Evolution of the queue (bold=expanded and then added):
 (<depth>, <node>)); Depth limit = 3
1. [(d1, 1)] : initial state
2. [(d2,2)][(d2,3)] : pop 1 and push 2 and 3

- 3. [(d3,4)][(d3,5)] [(d2, 3)] : pop 2 and push 4 and 5
- 4. [(d3, 5)] [(d2, 3)]: pop 4, cannot expand it further
- 5. [(d2, 3)]: pop 5, cannot expand it further
- 6. [(d3,6)][(d3,7)]: pop 3, and push 6, 7

....

26

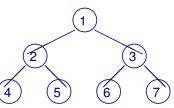
Iterative Deepening Search: DLS by Increasing Limit



• node visit order:

- $1\ ;\ 1\ 2\ 3;\ 1\ 2\ 4\ 5\ 3\ 6\ 7;\ 1\ 2\ 4\ 8\ 9\ 5\ 10\ 11\ 3\ 6\ 12\ 13\ 7\ 14\ 15;\ \dots$
- revisits already explored nodes at successive depth limit
- queuing function: enqueue at front (i.e. stack push)
- push the depth of the node as well: (<depth> <node>)

IDS: Expand Order



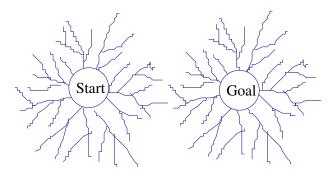
Basically the same as DLS: Evolution of the queue (bold=expanded and then added): (<depth>, <node>)); e.g. Depth limit = 3 1. [(d1,1)] : initial state 2. [(d2,2)][(d2,3)] : pop 1 and push 2 and 3

- 3. **[(d3,4)][(d3,5)]** [(d2, 3)] : pop 2 and push 4 and 5
- 4. [(d3, 5)] [(d2, 3)]: pop 4, cannot expand it further
- 5. [(d2, 3)]: pop 5, cannot expand it further
- 6. [(d3,6)][(d3,7)]: pop 3, and push 6, 7

...

29

Bidirectional Search (BDS)



- Search from both initial state and goal to reduce search depth.
- $O(b^{d/2})$ of BDS vs. $O(b^{d+1})$ of BFS.

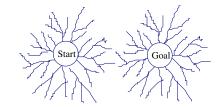
IDS: Evaluation

branching factor b, depth of solution d:

- complete: cf. DLS, which is conditionally complete
- time: $O(b^d)$ nodes expanded (worst case)
- space: O(bd) (cf. DFS and DLS)
- optimal!: unlike DFS or DLS
- good when search space is huge and the depth of the solution is not known (*)

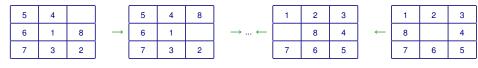
30

BDS: Considerations



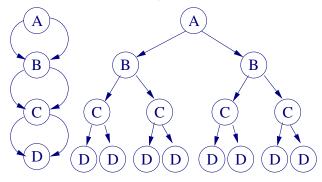
- 1. how to back trace from the goal?
- 2. successors and predecessors: are operations reversible?
- 3. are goals explicit?: need to know the goal to begin with
- 4. check overlap in two branches
- 5. BFS? DFS? which strategy to use? Same or different?

BDS Example: 8-Puzzle



- Is it a good strategy?
- What about Chess? Would it be a good strategy?
- What kind of domains may be suitable for BDS?

Avoiding Repeated States



Repeated states can be devastating in search problems.

- Common cases: problems with reversible operators → search space becomes infinite
- One approach: find a spanning tree of the graph

33

Avoiding Repeated States: Strategies

5	4			5	4	8		5	4			5	4	8	
6	1	8	\rightarrow	6	1	-	\rightarrow	6	1	8	\rightarrow	6	1	-	
7	3	2		7	3	2		7	3	2		7	3	2	

- Do not return to the node's parent
- Avoid cycles in the path (this is a huge theoretical problem in its own right)
- Do not generate states that you generated before: use a hash table to make checks efficient

How to avoid storing every state? Would using a short signature (or a checksum) of the full state description help?

34

Key Points

- DLS, IDS, BDS search order, expansions, and queuing
- DLS, IDS, BDS evaluation
- DLS, IDS, BDS: suitable domains
- Repeated states: why removing them is important

Overview

- Best-first search
- Heuristic function
- Greedy best-first search
- A*
- Designing good heuristics
- *IDA**
- Iterative improvement algorithms
 - 1. Hill-climbing
 - 2. Simulated annealing

37

Best First Search

function Best-First-Search (problem, Eval-Fn)
Queuing-Fn ← sorted list by Eval-Fn(node)
return General-Search(problem, Queuing-Fn)

- The queuing function queues the expanded nodes, and sorts it every time by the *Eval-Fn* value of each node.
- One of the simplest Eval-Fn: estimated cost to reach the goal.

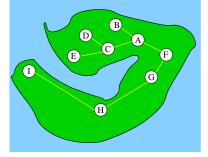
Informed Search (Chapter 4)

From domain knowledge, obtain an evaluation function.

- best-first search: order nodes according to the evaluation function value
- greedy search: minimize estimated cost for reaching the goal fast, but incomplete and non-optimal.
- A*: minimize f(n) = g(n) + h(n), where g(n) is the current path cost from start to n, and h(n) is the estimated cost from n to goal.

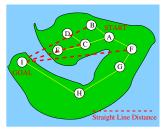
38

Heuristic Function



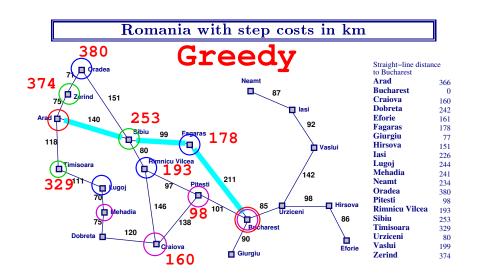
- h(n) = estimated cost of the cheapest path from the state at node n to a goal state.
- The only requirement is the h(n) = 0 at the goal.
- **Heuristics** means "to find" or "to discover", or more technically, "how to solve problems" (Polya, 1957).

Heuristics: Example



- $h_{\rm SLD}(n)$: straight line distance (SLD) is one example.
- Start from A and Goal is I: C is the most promising next step in terms of $h_{\rm SLD}(n)$, i.e. h(C) < h(B) < h(F)
- Requires some knowledge:
 - 1. coordinates of each city
 - 2. generally, cities toward the goal tend to have smaller SLD.

41



Greedy Best-First Search

function Greedy-Best-First Search (problem)

h(n)=estimated cost from n to goal

return Best-First-Search(*problem*,*h*)

• Best-first with heuristic function h(n)

42

Greedy Best-First Search: Evaluation

Branching factor b and max depth m:

- Fast, just like Depth-First-Search: single path toward the goal.
- Time: $O(b^m)$
- Space: same as time all nodes are stored in sorted list(!), unlike DFS
- Incomplete, just like DFS
- Non-optimal, just like DFS

Total Path Cost = 450

A^* : Uniform Cost + Heuristic Search

Avoid expanding paths that are already found to be expensive:

- f(n) = g(n) + h(n)
- f(n) : estimated cost to goal through node n
- provably complete and optimal!
- $\bullet \;$ restrictions: h(n) should be an admissible heuristic
- admissible heuristic: one that **never overestimate** the actual cost of the best solution through *n*

$A^{\ast}\text{Search}$

function A^* -Search (*problem*) g(n)=current cost up till n h(n)=estimated cost from n to goal return Best-First-Search(*problem*,g + h)

• Condition: h(n) must be an **admissible heuristic function**!

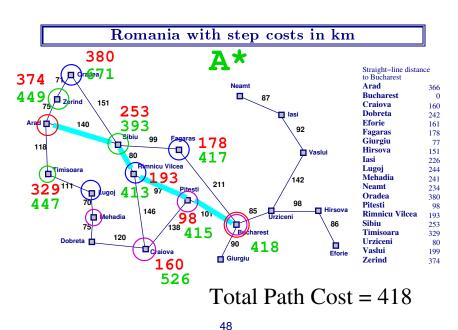
46

• A^* is optimal!

45

Behavior of $A^{\ast}\mbox{Search}$

- usually, the *f* value never decreases along a given path: **monotonicity**
- in case it is nonmonotonic, i.e. f(Child) < f(Parent), make this adjustment:
 f(Child) = man(f(Parent), a(Child) + h(Child))
 - f(Child) = max(f(Parent), g(Child) + h(Child)).
- this is called pathmax



Optimality of \boldsymbol{A}^*

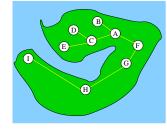
 G_2 : suboptimal goal in the node-list.

n: unexpanded node on a shortest path to goal G_1

- $f(G_2) = g(G_2)$ since $h(G_2) = 0$
- $> g(G_1)$ since G_2 is suboptimal
- $\bullet \geq f(n)$ since h is admissible

Since $f(G_2) > f(n)$, A^{*} will never select G_2 for expansion.

Optimality of A^* : Example



- 1. Expansion of parent allowed: search fails at nodes B, D, and E.
- 2. Expansion of parent disallowed: paths through nodes B, D, and E with have an inflated path cost g(n), thus will become nonoptimal.

$$\underbrace{A \to C \to} E \to C \to A \to F \to \dots$$

inflated path cost

49

Lemma to Optimality of A*

Lemma: A^* expands nodes in order of increasing f(n) value.

- Gradually adds f-contours of nodes (cf. BFS adds layers).
- The goal state may have a f value: let's call it f^*
- This means that all nodes with $f < f^*$ will be expanded!

50

Complexity of A^{\ast}

 A^* is complete and optimal, but space complexity can become exponential if the heuristic is not good enough.

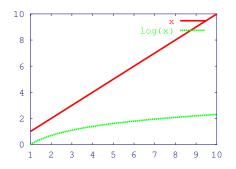
• condition for **subexponential** growth:

 $|h(n) - h^*(n)| \le O(\log h^*(n)),$ where $h^*(n)$ is the **true** cost from n to the goal.

• that is, error in the estimated cost to reach the goal should be less than even linear, i.e. $< O(h^*(n))$.

Unfortunately, with most heuristics, error is at least proportional with the true cost, i.e. $\geq O(h^*(n)) > O(\log h^*(n))$.

Linear vs. Logarithmic Growth Error



- Error in heuristic: $|h(n) h^*(n)|$.
- For most heuristics, the error is at least linear.
- For A^* to have subexponential growth, the error in the heuristic should be on the order of $O(\log h^*(n))$.

53

A^* : Evaluation

- Complete : unless there are infinitely many nodes with $f(n) \leq f(G)$
- Time complexity: exponential in (relative error in $h \times {\rm length}$ of solution)
- Space complexity: same as time (keep all nodes in memory)
- Optimal

Problem with \boldsymbol{A}^{*}

Space complexity is usually exponential!

- we need a memory bounded version
- one solution is: Iterative Deepening A^* , or IDA^*

54

Heuristic Functions: Example

Eight puzzle

5	4		1	2	3
6	1	8	8		4
7	3	2	7	6	5

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total **Manhattan** distance (city block distance)

 $h_1(n)$ = 7 (not counting the blank tile)

 $h_2(n)$ = 2+3+3+2+4+2+0+2 = 18

* Both are admissible heuristic functions.

Dominance

If $h_2(n) \ge h_1(n)$ for all n and both are admissible, then we say that $h_2(n)$ dominates $h_1(n)$, and is better for search.

Typical search costs for depth d = 14:

- Iterative Deepening : 3,473,941 nodes expanded
- A*(h₁): 539 nodes
- A*(h₂): 113 nodes

Observe that in A^* , every node with $f < f^*$ is expanded. Since f = g + h, nodes with $h(n) < f^* - g(n)$ will be expanded, so larger h will result in less nodes being expanded.

• f^* is the f value for the optimal solution path.

57

Other Heuristic Design

- Use composite heuristics: $h(n) = max(h_1(n), ..., h_m(n))$
- Use statistical information: random sample *h* and true cost to reach goal. Find out how often *h* and true cost is related.

Designing Admissible Heuristics

Relax the problem to obtain an admissible heuristics.

For example, in 8-puzzle:

- allow tiles to move anywhere $ightarrow h_1(n)$
- allow tiles to move to any adjacent location $\rightarrow h_2(n)$

For traveling:

• allow traveler to travel by air, not just by road: SLD

58

Iterative Deepening A^* : IDA^*

 A^* is complete and optimal, but the performance is limited by the available space.

- Basic idea: only search within a certain *f* bound, and gradually increase the *f* bound until a solution is found.
- More on IDA^* next time.

IDA^*

function IDA^* (problem)					
$root \leftarrow Make-Node(Initial-State(problem))$					
<i>f-limit</i> ← f-Cost(<i>root</i>)					
loop do					
<i>solution, f-limit</i> ← DFS-Contour(<i>root, f-limit</i>)					
if solution != NULL then return solution					
if <i>f</i> -limit == ∞ then return failure					
end loop					

Basically, iterative deepening depth-first-search with depth defined as the $f\operatorname{-cost}(f=g+n)$:

61

IDA^* : Evaluation

- complete and optimal (with same restrictions as in A*)
- space: proportional to longest path that it explores (because it is depth first!)
- time: dependent on the number of different values h(n) can assume.

DFS-Contour(root, f-limit)

Find solution from node **root**, within the f-cost limit of **f-limit**. DFS-Contour returns **solution sequence** and **new** f-cost limit.

- if f-cost(**root**) > **f**-limit, return fail.
- if **root** is a goal node, return solution and new *f*-cost limit.
- recursive call on all successors and return solution and minimum *f*-limit returned by the calls
- return **null solution** and new *f*-limit by default

Similar to the recursive implementation of DFS.

62

IDA^* : Time Complexity

Depends on the heuristics:

- small number of possible heuristic function values \rightarrow small number of f-contours to explore \rightarrow becomes similar to A^*
- $\bullet \,$ complex problems: each $f\mbox{-}{\rm contour}$ only contain one new node
 - $\text{ if } \mathbf{A}^* \text{ expands } N \text{ nodes,} \\$

 IDA^* expands

 $1 + 2 + ... + N = \frac{N(N+1)}{2} = O(N^2)$

- a possible solution is to have a fixed increment ϵ for the $f\mbox{-limit}$

 \rightarrow solution will be suboptimal for at most ϵ ($\epsilon\text{-admissible})$

Other Methods: Beam Search

Best-first search with a fixed limited branching factor

- expand the first *n* nodes with the best Eval-Fn value, where *n* is a small number.
- *n* is called the width of the beam
- good for domains with continuous time functions (like speech recognition)
- good for domains with huge branching factor (like above)

Iterative Improvement Algorithms

Start with a complete configuration (all variable values assigned, and **optimal**), and **gradually improve** it.

- Hill-climbing (maximize cost function)
- Gradient descent (minimize cost function)
- Simulated Annealing (probabilistic)

66

Hill-Climbing

65

- no queue, keep only the best node
- greedy, no back-tracking
- good for domains where all nodes are solutions:
 - goal is to **improve** quality of the solution
 - optimization problems
- note that it is different from greedy search, which keeps a node list

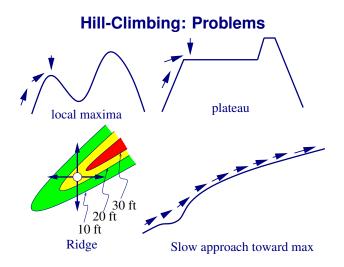
Hill-Climbing Strategies

Problems of local maxima, plateau, and ridges:

- try **random-restart**: move to a random location in the landscape and restart search from there
- keep *n* best nodes (beam search) *
- parallel search
- simulated annealing *

Hardness of problem depends on the shape of the landscape.

*: coming up next



• Possible solution: **simulated annealing** – gradually decrease randomness of move to attain globally optimal solution (more on this next week).

69

Simulated Annealing (SA)

Goal: minimize the energy E, as in statistical thermodynamics. For successors of the current node,

- if $\Delta E \leq 0$, the move is accepted
- if $\Delta E > 0$, the move is accepted with probability $P(\Delta E) = e^{-\frac{\Delta E}{kT}}$, where k is the Boltzmann constant and T is temperature.
- randomness is in the comparison: $P(\Delta E) < \mathrm{rand}(0,1)$

 $\Delta E = E_{\rm new} - E_{\rm old}.$ The heuristic h(n) or f(n) represents E.

Simulated Annealing: Overview

Annealing:

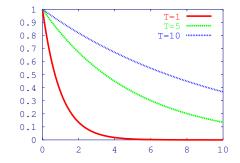
- heating metal to a high-temperature (making it a liquid) and then allowing to cool slowly (into a solid); this relieves internal stresses and results in a more stable, lower-energy state in the solid.
- at high temperature, atoms move actively (large distances with greater randomness), but as temperature is lowered, they become more static.

Simulated annealing is similar:

- basically, hill-climbing with randomness that allows going **down** as well as the standard **up**
- randomness (as temperature) is reduced over time

70

Temperature and $P(\Delta E) < \operatorname{rand}(0, 1)$



Downward moves of any size are allowed at high temperature, but at low temperature, only small downward moves are allowed.

- Higher temperature $T \rightarrow$ higher probability of **downward** hill-climbing
- Lower $\Delta E \rightarrow$ higher probability of **downward** hill-climbing

T Reduction Schedule

High to low temperature reduction schedule is important:

- reduction too fast: suboptimal solution
- reduction too slow: wasted time
- question: does the form of the reduction schedule curve matter? linear, quadratic, exponential, etc.?

The proper values are usually found experimentally.

Simulated Annealing Applications

- VLSI wire routing and placement
- Various scheduling optimization tasks
- Traffic control
- Neural network training
- etc.

73

Constraint Satisfaction Search

Constraint Satisfaction Problem (CSP):

- state: values of a set of variables
- goal: test if a set of constraints are met
- operators: set values of variables
- general search can be used, but specialized solvers for CSP work better

74

Constraints

- Unary, binary, and higher order constraints: how many variables should simultaneously meet the constraint
- Absolute constraints vs. preference constraints
- Variables are defined in a certain**domain**, which determines the possible set of values, either discrete or continuous.

This is part of a much more complex problem called **constrained optimization problems** in operations research consisting of cost function (either minimize or maximize) and several constraints. Problems can be linear, nonlinear, convex, nonconvex, etc. Straight-forward solutions exist for a limited subclass of these (for example, for linear programming problems can be solved by the simplex method).

CSP: continued

- CSPs include NP-complete problems such as 3-SAT, thus finding the solutions can require exponential time.
- However, constraints can help narrow down the possible options, therefore reducing the branching factor. This is because in CSP, the goal can be decomposed into several constraints, rather than being a whole solution.
- Strategies: backtracking (back up when constraint is violated), forward checking (do not expand further if look-ahead returns a constraint violation). Forward checking is often faster and simple to implement.

77

Key Points

- best-first-search: definition
- heuristic function h(n): what it is
- greedy search: relation to h(n) and evaluation. How it is different from DFS (time complexity, space complexity)
- A*: definition, evaluation, conditions of optimality
- complexity of A^* : relation to error in heuristics
- designing good heuristics: several rule-of-thumbs
- *IDA**: evaluation, time and space complexity (worst case)
- beam search concept
- hill-climbing concept and strategies
- simulated annealing: core algorithm, effect of T and ΔE , source of randomness. 79

Heuristics for Constraint Satisfaction Problems

General strategies for variable selection:

- Most-constrained-variable heuristic (var with fewest possible values)
- Most-constraining-variable heuristic (var involved in the largest number of constraints)

and for value assignment:

• Least-constraining-value heuristic (value that rules out the smallest number of values for vars)

Reducing branching factor vs. leaving freedom for future choices.

78

Emacs Tips

M-x : [Alt]-[x] or [ESC] then [x], **C-x**: [CTRL]-[x]

- M-x shell (run shell within emacs)
- C-p (\uparrow) , C-n (\downarrow) , C-b (\leftarrow) , C-f (\rightarrow)
- C-x C-f (load file)
- M-x lisp-mode (environment for editing lisp code)
- C-s (search forward) C-r (reverse search)
- C-g (abort current command in scratch)
- C-k (cut line) C-y (yank, or paste)
- C-space (begin block) C-x C-x (end block) C-w (cut) C-y (yank, or paste)
- C-x u or M-x undo (undo) ; C-x C-s (save) ; C-x C-c (exit)

Full reference card: http://www.cs.tamu.edu/faculty/choe/courses/02spring/refs

Game Playing

Game Playing

- attractive AI problem because it is **abstract**
- one of the oldest domains in AI
- in most cases, the world state is fully accessible
- computer representation of the situation can be clear and exact
- challenging: uncertainty introduced by the opponent and the complexity of the problem (full search is impossible)
- hard: in chess, branching factor is about 35, and 50 moves by each player = 35^{100} nodes to search
 - compare to $10^{40}\ {\rm possible}\ {\rm legal}\ {\rm board}\ {\rm states}$
- game playing is more like real life than mechanical search

81

Games vs. Search Problems

"Unpredictable" opponent \rightarrow solution is a contingency plan

Time limits \rightarrow unlikely to find goal, must approximate

Plan of attack:

- algorithm for perfect play (Von Neumann, 1944)
- finite horizon, approximate evaluation (Zuse, 1945; Shannon, 1950; Samuel, 1952–57)
- pruning to reduce costs (McCarthy, 1956)

Types of Games

	deterministic	chance			
perfect info	chess, checkers, go, othello	backgammon, monopoly			
imperfect info	?	bridge, poker, scrabble			

Two-Person Perfect Information Game

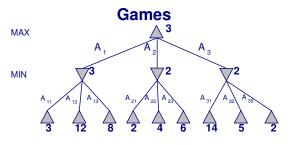
initial state: initial position and who goes first operators: legal moves

terminal test: game over?

utility function: outcome (win:+1, lose:-1, draw:0, etc.)

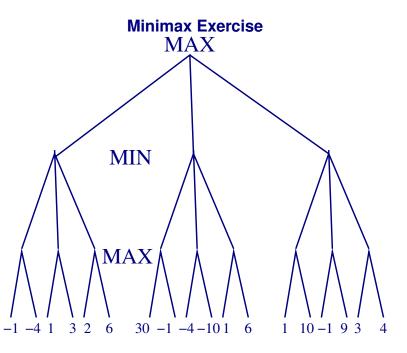
- two players (MIN and MAX) taking turns to maximize their chances of winning (each turn generates one ply)
- one player's victory is another's defeat
- need a strategy to win no matter what the opponent does

Minimax: Strategy for Two-Person Perfect Info



- generate the whole tree, and apply util function to the leaves
- go back upward assigning utility value to each node
- at MIN node, assign min(successors' utility)
- at MAX node, assign max(successors' utility)
- **assumption**: the opponent acts optimally

86



Minimax Decision

85

function Minimax-Decision (game) returns operator

return operator that leads to a child state with the **max**(Minimax-Value(child state,game))

function Minimax-Value(state,game) returns utility value

if Goal(state), return Utility(state)

else if Max's move then

 \rightarrow return max of successors' Minimax-Value

else

→ return min of successors' Minimax-Value

Minimax: Evaluation

Branching factor b, max depth m:

- complete: if the game tree is finite
- **optimal**: if opponent is optimal
- $\bullet \ \, {\rm time:} \ \, b^m$
- **space**: *bm* depth-first (only when utility function values of all nodes are known!)

Resource Limits

- Time limit: as in Chess → can only evaluate a fixed number of paths
- Approaches:
 - evaluation function : how desirable is a given state?
 - cutoff test : depth limit
 - pruning

Depth limit can result in the **horizon effect**: interesting or devastating events can be just over the horizon!

89

Evaluation Functions

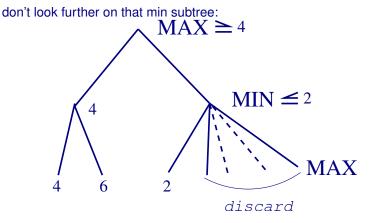
For chess, usually a linear weighted sum of feature values:

- Eval(s) = $\sum_{i} w_i f_i(s)$
- $f_i(s) =$ (number of white piece X) (number of black piece X)
- other features: degree of control over the center area
- exact values do not matter: the **order** of Minimax-Value of the successors matter.

α Cuts

90

When the current max value is greater than the successor's min value,

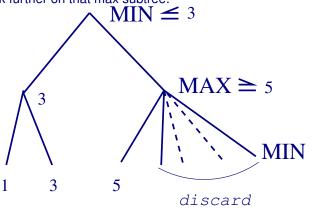


Right subtree can be **at most** 2, so MAX will always choose the left path regardless of what appears next.

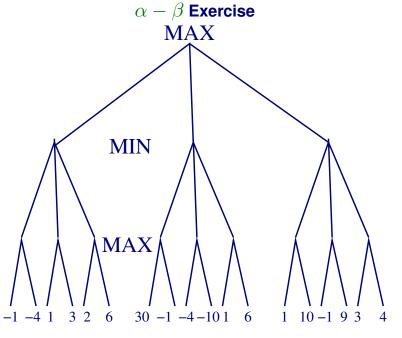
β Cuts

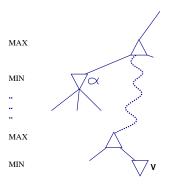
 $\alpha - \beta$ Pruning

When the current min value is less than the successor's max value,



93





- memory of best MAX value lpha and best MIN value eta
- do not go further on any one that does worse than the remembered α and β

94

$\alpha - \beta$ Pruning Properties

Cut off nodes that are known to be suboptimal.

Properties:

- pruning does not affect final result
- good move ordering improves effectiveness of pruning
- with **perfect ordering**, time complexity = $b^{m/2}$
 - \rightarrow **doubles** depth of search
 - \rightarrow can easily reach 8-ply in chess
- $b^{m/2} = (\sqrt{b})^m$, thus b = 35 in chess reduces to $b = \sqrt{35} \approx 6$!!!

Key Points

- Game playing: what are the types of games?
- Minimax: definition, and how to get minmax values
- Minimax: evaluation
- α - β pruning: why it saves time

Overview

- formal $\alpha \beta$ pruning algorithm
- $\alpha \beta$ pruning properties
- games with an element of chance
- state-of-the-art game playing with AI
- more complex games

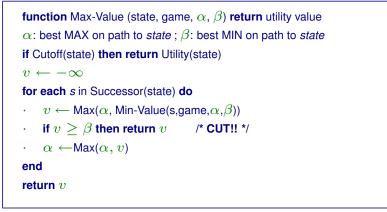
97

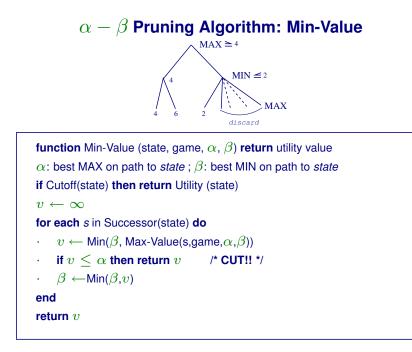
$\alpha - \beta$ Pruning: Initialization

Along the path from the beginning to the current state:

- α : best MAX value
 - · initialize to $-\infty$
- β : best MIN value
 - \cdot initialize to ∞

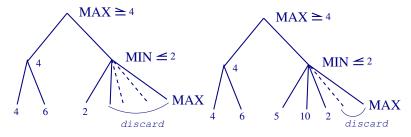
$\alpha - \beta$ Pruning Algorithm: Max-Value





101

Ordering is Important for Good Pruning



- For MIN, sorting successor's utility in an **increasing** order is better (shown above; left).
- For MAX, sorting in **decreasing** order is better.

$\alpha - \beta$ Pruning Tips

- At a MAX node:
 - Only α is updated with the MAX of successors.
 - Cut is done by checking if returned $v \geq \beta$.
 - If all fails, MAX(v of succesors) is returned.
- At a MIN node:
 - Only β is updated with the MIN of successors.
 - Cut is done by checking if returned $v \leq \alpha$.
 - If all fails, MIN(v of succesors) is returned.

102

Games With an Element of Chance

Rolling the dice, shuffling the deck of card and drawing, etc.

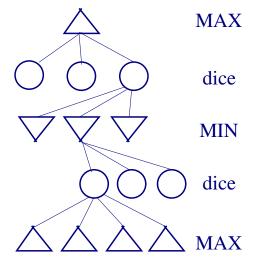
- chance nodes need to be included in the minimax tree
- try to make a move that maximizes the **expected value** \rightarrow **expectimax**
- expected value of random variable X:

$$E(X) = \sum_{x} x P(x)$$

• expectimax

$$\operatorname{expectimax}(C) = \sum_{i} P(d_i) \max_{s \in S(C, d_i)} (utility(s))$$

Game Tree With Chance Element



• chance element forms a new ply (e.g. dice, shown above)

105

State of the Art in Gaming With AI

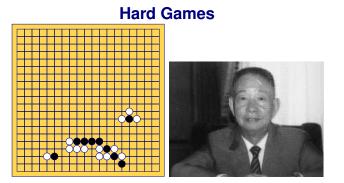
- Chess: IBM's Deep Blue defeated Garry Kasparov (1997)
- Backgammon: Tesauro's Neural Network \rightarrow top three (1992)
- Othello: smaller search space \rightarrow superhuman performance
- Checkers: Samuel's Checker Program running on 10Kbyte (1952)

Genetic algorithms can perform very well on select domains.

Design Considerations for Probabilistic Games

- the **value** of evaluation function, not just the **scale** matters now! (think of what expected value is)
- time complexity: $b^m n^m$, where n is the number of distinct dice rolls
- pruning can be done if we are careful

106



The game of *Go*, popular in East Asia:

- $19 \times 19 = 361$ grid: branching factor is huge!
- search methods inevitably fail: need more structured rules
- the bet was high: \$1,400,000 prize for the first computer program to beat a select, 12-year old player. The late Mr. Ing Chang Ki (photo above) put up the money from his personal funds.

108

Photo from http://www.samsloan.com/ing.htm.

Key Points

- formal $\alpha-\beta$ pruning algorithm: know how to apply pruning
- $\alpha \beta$ pruning properties: evaluation
- games with an element of chance: what are the added elements? how does the minmax tree get augmented?