CSCE 315: Introduction to Machine Learning

- Yoonsuck Choe
- October 9, 2013

What Is Machine Learning?

- A subfield of AI that is rapidly growing in importance.
- Performance of a system increased based on learning experience.
- Learning from data.

2

Why Machine Learning?

1

- Abundance of data: the data deluge.
 - Scientific instruments.
 - Data acquisition devices.
 - Internet and the web.
 - All sectors of human society producing and digitizing data.
- Not enough human expertise or man power to make sense of such huge amounts of data.

Machine Learning in the News

IBM's Watson

- IBM's Watson beats human champions: Jeopardy (game show)
- Google detects cats from YouTube videos.
- Google Glass app recognizes people it sees.
- Legal, medical, financial applications.

What Does It Take to do ML?

A lot of math:

- Linear algebra
- Calculus
- Probability and statistics
- Differential geometry
- Numerical methods

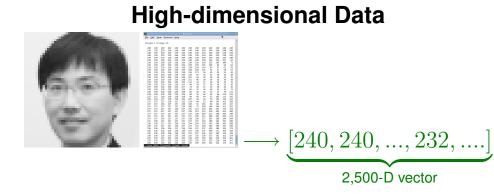
Types of Machine Learning

- Supervised learning
 - Input-Target pairs

- { $\langle \vec{x_i}, \vec{t_i} \rangle | i = 1, 2, ..., n$ }

- Unsupervised learning
 - A bunch of inputs (unlabeled)
 - { $\vec{x_i} | i = 1, 2, ..., n$ }
- Reinforcement learning

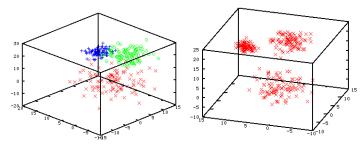
- state₁
$$\xrightarrow{}$$
 state₂ $\xrightarrow{}$ state₃, ..., reward
- $s_{t+1} = \delta(s_t, a_t), r_{t+1} = \rho(s_t, a_t)$
₆



- Images: these are 2D images, but ...
- These are 50×50 = 2,500-dimensional vectors.
 - Each such image is a single point in 2,500-dimensional space.

Example Data

5



- Left: supervised
- Right: unsupervised
- Typically very high dimensional (10,000, 1 million [or more]).

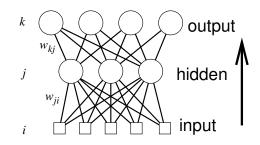
Supervised Learning

Supervised Learning

- Regression: approximating y = f(x)
- Classification: face recognition, hand-written character recognition, credit risk assessment, etc.
- Techniques:
 - Neural networks
 - Decision tree learning
 - Support vector machines
 - Radial basis functions
 - Naive Bayes learning
 - k-nearest neighbor 10

Neural Networks

9



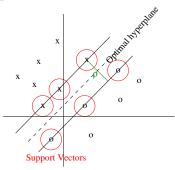
- Input, hidden, and output units.
- Connection weights are adjusted based on $\langle \vec{x}_t, \vec{t}_t \rangle$ and error in the output.

Decision Tree Learning

								-
ĺ	Ex Num	Outlook	Temp.	Humidity	Wind	Water	Forecast	Enjoy Sport?
ſ	1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
	2	Sunny	Warm	High	Strong	Warm	Same	Yes
	3	Rainy	Cold	High	Strong	Warm	Change	No
l								
Outlook Sunny Overcast Humidity Yes Wind High Normal Strong Weak No Yes No Yes								

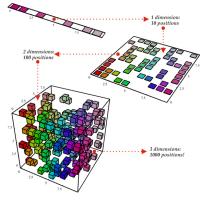
- Building a tree from scratch, one attribute at a time.
- Maximized information gain (checking which attribute reduces uncertainty the most?).

Support Vector Machine



- Similar to a one-layer neural network.
- Learning rule is different.
- Nice optimality properties.
 - 13

Addendum: Curse of Dimensionality



Unsupervised Learning

- From: Yoshua Bengio's page
- Exponentially many points needed to achieve same density of training samples.

15

Supervised Learning Issues

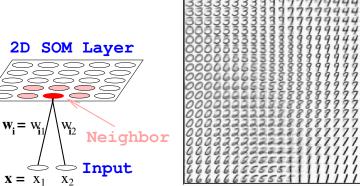
- How well will it do on training inputs?
- How well will it do on novel inputs?
 - Generalization.
- How many samples needed for sufficient performance and generalization?
 - Sample complexity
 - Curse of dimensionality
 - Computational learning theory
- Catastrophic forgetting (online learning hard).
 - 14

Unsupervised Learning

- Clustering, feature extraction, blind source separation, dimensionality reduction, etc.
- Techniques:
 - Principal Component Analysis (PCA)
 - Self-Organizing Maps (SOM)
 - Independent Component Analysis (ICA)
 - Multi-Dimensional Scaling (MDS)
 - ISOMAP, Locally Linear Embedding (LLE)

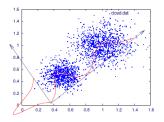
17

Self-Organizing Maps



- Units occupy a regular grid (1D, 2D, 3D), with reference vector.
- Inputs matched to units with most similar reference vectors.
- Reference vectors adjusted based on match and neighbor on grid.
- Nearby units represent similar inputs.

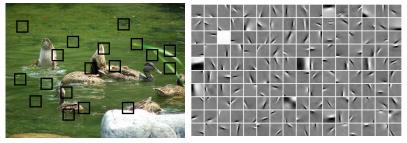
Principal Component Analysis



- Finding orthogonal axes that result in maximum variance when projected.
- Large portion of information resides in the first few principal components.
- Dimensionality reduction.

18

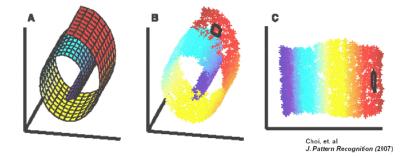
Independent Component Analysis



Hoyer and Hyvärinen (2000)

- Find additive sources (right) based on their mixtures (e.g., image patches to the left).
- Sources assumed to be statistically independent from each other and non-Gaussian.
- Feature extraction, blind source separation.

Manifold Learning: ISOMAP, etc.



- Low-dimensional manifold embedded in high-dimensional space.
- Recover the manifold. Geodesic distance a central concept.
- Dimensionality reduction, visualization, etc.

Reinforcement Learning

Unsupervised Learning Issues

- Discovering structure.
- Discovering features.
- Removing redundancy.
- How many clusters?
- What distance measures to use?

22

Reinforcement Learning

- Very different from supervised and unsupervised learning.
- Multi agent control, robot control, game playing, scheduling, etc.
- Techniques:
 - Value function-based: Q-learning, Temporal difference (TD) learning
 - Direct policy search: Neuroevolution, genetic algorithms.

Learning the Meaning of Neural Spikes

What If They Are Brain Responses

to Something

What do these blinking lights mean? (Choe et al. 2007).

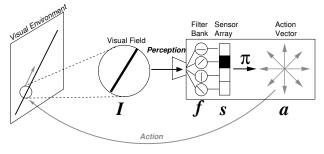
25

They Are Visual Cortical Responses

to Oriented Lines

26

Use Reinforcement Learning



- Direct access to **encoded internal state** (sensory array) only.
- Action is enabled, which can move the gaze.
- How does this solve the grounding problem?

Action for Unchanging Internal State

• Diagonal motion causes the internal state to remain

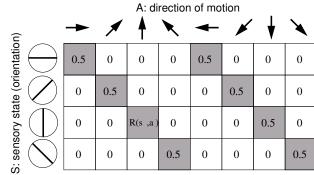
• Property of such a movement exactly reflects the

property of the input I: Semantics figured out

unchanging over time.

through action.

Reinforcement Learing

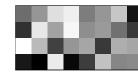


• Learn state-to-action mapping to maximize invariance in internal state.

30

29

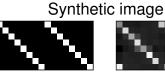
Results: Learned R(s, a)



(a) Initial

(b) Ideal

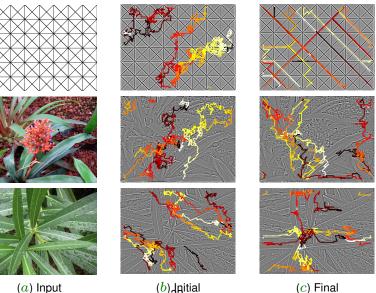
(a) Initial



(b) Ideal

- (c) Plant Natural images
- Learned R(s, a) close to ideal.

Results: Gaze Trajectory



(a) Input

(b) Initial

Brief Summary

- Decoding of encoded representation can be done without external reference.
- Action and changes in the internal representation induced by action is the key.
- Reinforcement learning plays a key role.

Reinforcement Learning Issues

- Discrete states and actions is a norm.
- Scalability an issue.
- Certain assumptions: state-action pair visited infinitely often.
- Online learning, safety, transfer, etc.

33

34

- Summary
- Machine learning is a rapidly developing field with great promise:
 - Big data
 - New theoretical insights (e.g., deep learning)
- Need to look beyond ML:
 - ML good at solving problems, but not posing problems (Choe and Mann 2012).

Wrap Up