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Why Machine Learning?

e Abundance of data: the data deluge.
— Scientific instruments.
— Data acquisition devices.
— Internet and the web.
— All sectors of human society producing and

digitizing data.

e Not enough human expertise or man power to make

sense of such huge amounts of data.

What Is Machine Learning?

e A subfield of Al that is rapidly growing in importance.

e Performance of a system increased based on

learning experience.

e Learning from data.

Machine Learning in the News

IBM’s Watson

IBM’s Watson beats human champions: Jeopardy (game show)

Google detects cats from YouTube videos.

Google Glass app recognizes people it sees.

Legal, medical, financial applications.



What Does It Take to do ML?

A lot of math:
e Linear algebra

Calculus

Probability and statistics

Differential geometry

Numerical methods

Example Data

e | eft: supervised
e Right: unsupervised

e Typically very high dimensional (10,000, 1 million [or

more]).

Types of Machine Learning

e Supervised learning
— Input-Target pairs
- {(#,t)]i=1,2,..,n}
e Unsupervised learning
— A bunch of inputs (unlabeled)
-{Zli=1,2,...n}
e Reinforcement learning
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High-dimensional Data
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2,500-D vector
e Images: these are 2D images, but ...
e These are b0 x 50 = 2,500-dimensional vectors.

— Each such image is a single point in
2,500-dimensional space.



Supervised Learning
e Regression: approximating y = f(x)

e Classification: face recognition, hand-written

character recognition, credit risk assessment, etc.

Supervised Learning ohni
® |echniques:

— Neural networks

Decision tree learning

— Support vector machines
— Radial basis functions

— Naive Bayes learning

9 — k-nearest neighbor 10
Neural Networks Decision Tree Learning
Ex Num| [Outlook [Temp. |Humidity | Wind \Water [Forecast Enjoy Sport?

k 1 Sunny Warm Normal IStrong arm Same Yes

2 Sunny arm High Strong arm Same Yes

3 Rainy Cold High Strong arm  |Change No
. Sunny  Overcast Rain
l

.

° |npUt’ hidden’ and OUtpUt units' High Normal Strong Weak
\
Yes

e Connection weights are adjusted based on (7, ;)
and error in the output. e Building a tree from scratch, one attribute at a time.
e Maximized information gain (checking which

attribute reduces uncertainty the most?).
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Support Vector Machine Supervised Learning Issues

How well will it do on training inputs?

How well will it do on novel inputs?

— Generalization.

L 0 e How many samples needed for sufficient

Support Vjectors performance and generalization?

e Similar to a one-layer neural network. — Sample complexity

: . — Curse of dimensionality
e |earning rule is different.
— Computational learning theory
e Nice optimality properties.

Catastrophic forgetting (online learning hard).
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Addendum: Curse of Dimensionality

Unsupervised Learning

From: Yoshua Bengio’s page

e Exponentially many points needed to achieve same
density of training samples.
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Unsupervised Learning Principal Component Analysis

e Clustering, feature extraction, blind source

separation, dimensionality reduction, etc.

e Techniques:
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Principal Component Analysis (PCA)

_ Self-Organizing Maps (SOM) e Finding orthogonal axes that result in maximum variance when

projected.
— Independent Component Analysis (ICA)

e Large portion of information resides in the first few principal

— Multi-Dimensional Scaling (MDS) components.
— ISOMAP, Locally Linear Embedding (LLE) e Dimensionality reduction.
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X=X X Input bosicseseesstilliiyy e Find additive sources (right) based on their mixtures (e.g., image

patches to the left).
Units occupy a regular grid (1D, 2D, 3D), with reference vector.
® Sources assumed to be statistically independent from each other

Inputs matched to units with most similar reference vectors. and non-Gaussian.

Reference vectors adjusted based on match and neighbor on grid. e Feature extraction, blind source separation.

Nearby units represent similar inputs. 20



Manifold Learning: ISOMAP, etc. Unsupervised Learning Issues

Discovering structure.

Discovering features.

Removing redundancy.

Chei, et. al
J. Pattern Recognition {2007)

How many clusters?

What distance measures to use?

o Low-dimensional manifold embedded in high-dimensional space.
® Recover the manifold. Geodesic distance a central concept.

o Dimensionality reduction, visualization, etc.
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Reinforcement Learning

e Very different from supervised and unsupervised
learning.

e Multi agent control, robot control, game playing,

Reinforcement Learning scheduling, etc.

e Techniques:

— Value function-based: Q-learning, Temporal
difference (TD) learning

— Direct policy search: Neuroevolution, genetic
algorithms.
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Learning the Meaning of Neural
Spikes

e What do these blinking lights mean? (Choe et al.

2007).
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They Are Visual Cortical Responses
to Oriented Lines

This is a problem of grounding.
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What If They Are Brain Responses
to Something
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Use Reinforcement Learning

0

Filter Sensor Action
Bank Array Vector

Visual Field
> Perception|
’ T
f s a

e Direct access to encoded internal state (sensory

array) only.

e Action is enabled, which can move the gaze.

e How does this solve the grounding problem?
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Action for Unchanging Internal State Reinforcement Learing

A: direction of motion

- A X - ¥y
@ 0.5 0 0 0 0.5 0 0 0
@ 0 0.5 0 0 0 0.5 0 0

(I) 0 0 |Rc.a) O 0 0 0.5 0
® 0 0 0 0.5 0 0 0 0.5

e | earn state-to-action mapping to maximize

e Diagonal motion causes the internal state to remain

S: sensory state (orientation)

unchanging over time.

e Property of such a movement exactly reflects the

property of the input /: Semantics figured out invariance in internal state.

through action.
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e Learned R(s, a) close to ideal.
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Brief Summary

e Decoding of encoded representation can be done

without external reference.

e Action and changes in the internal representation
induced by action is the key.

e Reinforcement learning plays a key role.
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Wrap Up
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Reinforcement Learning Issues

Discrete states and actions is a norm.

Scalability an issue.

Certain assumptions: state-action pair visited

infinitely often.

Online learning, safety, transfer, etc.
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Summary

e Machine learning is a rapidly developing field with

great promise:

— Big data

— New theoretical insights (e.g., deep learning)
e Need to look beyond ML:

— ML good at solving problems, but not posing
problems (Choe and Mann 2012).
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