
Performance and Code 
Tuning Overview

CPSC 315 – Programming Studio
adapted from John Keyser's 315 slides

Is Performance
Important?

 Performance tends to improve with time
− Hardware Improves (SW tweak might not last?)

 Other things can be more important
− Accuracy
− Robustness
− Code Readability

 Worrying about it can cause problems
− “More computing sins are committed in the name 

of efficiency (without necessarily achieving it) 
than for any other single reason – including blind 
stupidity.” – William A. Wulf

Performance Increases 
without Code Tuning

 Lower your Standards/Requirements
− Asking for more than is needed leads to 

trouble
− Example: Return in 1 second

 Always?
 On Average?
 99% of the time?

Performance Increases 
without Code Tuning

 Lower your Standards/Requirements
 High Level Design

− The overall program structure can play a 
huge role



Performance Increases 
without Code Tuning

 Lower your Standards/Requirements
 High Level Design
 Class/Routine Design

− Algorithms used can have real differences
− Can have largest effect, especially 

asymptotically

Performance Increases 
without Code Tuning

 Lower your Standards/Requirements
 High Level Design
 Class/Routine Design
 Interactions with Operating System

− Hidden OS calls within libraries – their 
performance affects overall code

Performance Increases 
without Code Tuning

 Lower your Standards/Requirements
 High Level Design
 Class/Routine Design
 Interactions with Operating System
 Upgrade Hardware

− Straightforward, if possible…

Performance Increases 
without Code Tuning

 Lower your Standards/Requirements
 High Level Design
 Class/Routine Design
 Interactions with Operating System
 Upgrade Hardware
 Compiler Optimizations

− “Automatic” optimization,
− Getting better and better, though not perfect
− Different compilers work better/worse



Code Profiling

 Determine where code is spending time
− No sense in optimizing where no time is 

spent
 Provide basis for measurement

− Determine whether “improvement” really 
improved anything

 Need to take precise measurements

Profiling Techniques
 Profiler – compile with profiling options, and run 

through profiler
− Gets list of functions/routines, and amount of time spent in 

each
 Use system timer

− Less ideal
− Might need test harness for functions

 Use system-supported real time
− Only slightly better than wristwatch…

 Graph results for understanding
− Multiple profile results: see how profile changes for different 

input types

What Is Tuning?

 Making small-scale adjustments to correct 
code in order to improve performance

− After code is written and working
 Affects only small-scale: a few lines, or at 

most one routine
− Examples: adjusting details of loops, expressions

 Code tuning can sometimes improve code 
efficiency tremendously

What Tuning is Not

 Reducing lines of code
− Not an indicator of efficient code

 A guess at what might improve things
− Know what you’re trying, and measure results

 Optimizing as you go
− Wait until finished, then go back to improve,
− as optimizing while programming is often a waste

 A “first choice” for improvement
− Worry about other details/design first



Common Inefficiencies

 Unnecessary I/O operations
− File access especially slow

 Paging/Memory issues
− Can vary by system

 System Calls
 Interpreted Languages

− C/C++/VB tend to be “best”
− Java about 1.5 times slower
− PHP/Python about 100 times slower

Operation Costs

 Different operations take different times
− Integer division longer than other ops
− Transcendental functions (sin, sqrt, etc.) 

even longer
− Knowing this can help when tuning

 Vary by language
− In C++, private routine calls take about 

twice the time of an integer op, and in 
Java about half the time.

Remember

 Code readability/maintainability/etc. is 
usually more important than efficiency

 Always start with well-written code, and 
only tune at the end

 Measure!


