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Today’s Main Topic

• Neuroevolution: Evolve artificial neural networks to

control behavior of robots and agents.

• Main idea: Mimic the natural process of evolution

that gave rise to the brain, the source of intelligence.

– Population

– Competition

– Selection

– Reproduction and mutation
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Why Neuroevolution?

• Neural networks already successful in many domains.

• However, in certain domains, it is hard to fit the existing framework

and learning algorithms.

• Hard domains: fin-less rocket control, robotic agent control, etc.
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Outline

• Basic neuroevolution techniques

• Advanced techniques

– E.g. combining learning and evolution

• Extensions to applications

• Application examples

– Control, Robotics, Artificial Life, Games
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Neuroevolution Decision Strategies

• Input variables describe the state

• Output variables describe actions

• Network between input and output:
– Hidden nodes
– Weighted connections

• Execution:
– Numerical activation of input
– Nonlinear weighted sums

• Performs a nonlinear mapping
– Memory in recurrent connections

• Connection weights and structure evolved
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Neuroevolution Basics
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output

Input
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• A single chromosome encodes a full neural network.

• Each gene, a single bit (or a real number), maps to a

connection weight in the neural network.
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Neuroevolution Basics: Operations

cross−over point

PARENTS OFFSPRINGS

w9w3 w4 w6 w7 w8w1 w2 w5 ww w10 11 12 w9w3 w4 w6 w7 w8w1 w2 w5 ww w10 11 12

w9w3 w4 w6 w7 w8w1 w2 w5 ww w10 11 12w9w3 w4 w6 w7 w8w1 w2 w5 ww w10 11 12
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MUTATION

CROSS−OVER

w w11 12n2

• Cross-over.

• Mutation.
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Neuroevolution Basics: Cross-Over in Detail

cross−over point

PARENTS OFFSPRINGS
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w7 w12
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CROSS−OVER

• Cross-over of two individuals produces two offsprings with

a mixed heritage.
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Conventional Neuroevolution (CNE)

• Evolving connection weights in a population of networks 19,38,39

• Chromosomes are strings of weights (bits or real)
– E.g. 10010110101100101111001
– Usually fully connected, fixed topology
– Initially random
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Conventional Neuroevolution (2)

• Each NN evaluated in the task
– Good NN reproduce through crossover, mutation
– Bad thrown away
– Over time, NNs evolve that solve the task

• Natural mapping between genotype and phenotype

• GA and NN are a good match!11

Problems with CNE

• Evolution converges the population (as usual with EAs)
– Diversity is lost; progress stagnates

• Competing conventions
– Different, incompatible encodings for the same solution

• Too many parameters to be optimized simultaneously
– Thousands of weight values at once12



Advanced NE 1: Evolving Neurons

• Evolving individual neurons to cooperate in networks 1,22,24

(Agogino GECCO’05)

• E.g. Enforced Sub-Populations (ESP ? )
– Each (hidden) neuron in a separate subpopulation
– Fully connected; weights of each neuron evolved
– Populations learn compatible subtasks
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Advanced NE 2: Evol. Subpopulations
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• Evolution encourages diversity automatically
– Good networks require different kinds of neurons

• Evolution discourages competing conventions
– Neurons optimized for compatible roles

• Large search space divided into subtasks
– Optimize compatible neurons
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Advanced NE 3: Evolving Topologies

• Optimizing connection weights and network topology 11,40

• E.g. Neuroevolution of Augmenting Topologies (NEAT 27,29)

• Based on Complexification

• Of networks:
– Mutations to add nodes and connections

• Of behavior:
– Elaborates on earlier behaviors
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How Can We Complexify?

• Can optimize not just weights but also topologies

vs.

• Solution: Start with minimal structure and complexify 37

Minimal Starting Networks

Population of Diverse Topologies

Generations pass...

• Can search a very large space of configurations!

16



How Can Crossover be Implemented?

• Problem: Structures do not match

• Solution: Utilize historical markings
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How can Innovation Survive?

• Problem: Innovations have initially low fitness

vs.

• Solution: Speciate the population

– Innovations have time to optimize

– Mitigates competing conventions

– Promotes diversity
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Further Neuroevolution Techniques

• Incremental evolution 13,33,39

• Utilizing population culture 2,18

• Evolving ensembles of NNs 16,23,36

(Pardoe GECCO’05)

• Evolving neural modules 25

• Evolving transfer functions and learning rules 4,26?

• Combining learning and evolution
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Neuroevolution Applications

• Evolving composite decision makers 36

• Evolving teams of agents 3,28,41

• Utilizing coevolution 30

• Real-time neuroevolution 28

• Combining human knowledge with evolution 8
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Applications to Control

• Pole-balancing benchmark

– Originates from the 1960s

– Original 1-pole version too easy

– Several extensions: acrobat, jointed, 2-pole,

particle chasing 23

• Good surrogate for other control tasks

– Vehicles and other physical devices

– Process control 34
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Competitive Coevolution

• Evolution requires an opponent to beat

• Such opponents are not always available

• Co-evolve two populations to outdo each other

• How to maintain an arms race?22

Competitive Coevolution with NEAT

• Complexification elaborates instead of alters

– Adding more complexity to existing behaviors

• Can establish a coevolutionary arms race

– Two populations continually outdo each other

– Absolute progress, not just tricks
23

Robot Duel Domain

• Two Khepera-like robots forage, pursue, evade 30

– Collect food to gain energy

– Win by crashing to a weaker robot
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Early Strategies

• Crash when higher energy

• Collect food by accident

• DEMO
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Mature Strategies

• Collect food to gain energy

• Avoid moving to lose energy

• Standoff: Difficult to predict outcome

• DEMO 26

Sophisticated Strategy

• “Fake” a move up, force away from last piece

• Win by making a dash to last piece

• Complexification→ arms race

• DEMO 27

Applications to Games
a b
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• Good research platform
– Controlled domains, clear performance, safe
– Economically important; training games possible

• Board games: beyond limits of search
– Evaluation functions in checkers, chess 5,9,10

– Filtering information in go, othello 20,3128



Discovering Novel Strategies in Othello

(a) (b) (c)

• Players take turns placing pieces

• Each move must flank opponent’s piece

• Surrounded pieces are flipped

• Player with most pieces wins
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Strategies in Othello

(a) (b) (c)

• Positional

– Number of pieces and their positions

– Typical novice strategy

• Mobility

– Number of available moves: force a bad move

– Much more powerful, but counterintuitive

– Discovered in 1970’s in Japan
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Evolving Against a Random Player
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• Network sees the board, suggests moves by ranking 21

• Networks maximize piece counts throughout the game
• A positional strategy emerges
• Achieved 97% winning percentage31

Evolving Against an α-β Program
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Network Searcher

• Iago’s positional strategy destroyed networks at first

• Evolution turned low piece count into an advantage

• Mobility strategy emerged!

• Achieved 70% winning percentage32



Example game
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(a) (b)

• Black’s positions strong, but mobility weak

• White (the network) moves to f2

• Black’s available moves b2, g2, and g7 each will

surrender a corner

• The network wins by forcing a bad move
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Discovering Novel Strategies
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• Neuroevolution discovered a strategy novel to us

• “Evolution works by tinkering”

– So does neuroevolution

– Initial disadvantage turns into novel advantage
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Future Challenge: Utilizing Knowledge

• Given a problem, NE discovers a solution by exploring
– Sometimes you already know (roughly) what works
– Sometimes random initial behavior is not acceptable

• How can domain knowledge be utilized?
– By incorporating rules (Yong GECCO’05)

– By learning from examples35

Numerous Other Applications

• Creating art, music 6

• Theorem proving 7

• Time-series prediction 17

• Computer system optimization 12

• Manufacturing optimization 14

• Process control optimization 34,35

• Etc.
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Conclusion

• Neuroevolution, mimicing the natural process of evolution,

is an effective strategy for constructing complex and useful

behavior.

• Neuroevolution often performs well for reinforcement

learning tasks.

• Analyzing the resulting network is a challenge.
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