Search and Game Playing

- CSCE 315 Programming Studio
- Material drawn from Gordon Novak's AI course, Yoonsuck Choe's Al course, and Russell and Norvig's Artificial Intelligence, A Modern Approach, 2nd edition.

Search Problems: Definition

Search $=<$ initial state, operators, goal states $>$

- Initial State: description of the current situation as given in a problem
- Operators: functions from any state to a set of successor (or neighbor) states
- Goal: subset of states, or test rule
- Search problems: definition
- Example: 8-puzzle
- General search
- Evaluation of search strategies
- Strategies: breadth-first, uniform-cost, depth-first
- More uninformed search: depth-limited, iterative deepening, bidirectional search

Variants of Search Problems

Search $=<$ state space, initial state, operators, goal states $>$

- State space: set of all possible states reachable from the current initial state through repeated application of the operators (i.e. path).

Search $=<$ initial state, operators, goal states, path cost $>$

- Path cost: find the best solution, not just a solution. Cost can be many different things.

Types of Search

- Uninformed: systematic strategies
- Informed: Use domain knowledge to narrow search
- Game playing as search: minimax, state pruning, probabilistic games

Search State

State as Data Structure

- examples: variable assignment, properties, order in list, bitmap, graph (vertex and edges)
- captures all possible ways world could be
- typically static, discrete (symbolic), but doe snot have to be

Choosing a Good Representation

- concise (keep only the relevant features)
- explicit (easy to compute when needed)
- embeds constraints

Goals: Subset of states or test rules

Specification:

- set of states: enumerate the eligible states
- partial description: e.g. a certain variable has value over x.
- constraints: or set of constraints. Hard to enumerate all states matching the constraints, or very hard to come up with a solution at all (i.e. you can only verify it; P vs. NP).

Other considerations:

- space, time, quality (exact vs. approximate trade-offs)

An Example: 8-Puzzle

5	4					
6	1	8				
7	3	2	$\rightarrow \ldots \uparrow \ldots \leftarrow \ldots \downarrow$	1	2	3
:---:	:---:	:---:				
8		4				
7	6	5				

- State: location of 8 number tiles and one blank tile
- Operators: blank moves left, right, up, or down
- Goal test: state matches the configuration on the right (see above)
- Path cost: each step cost 1, i.e. path length, or search tree depth

Generalization: 15-puzzle, $\ldots,\left(N^{2}-1\right)$-puzzle

8-Puzzle: Search Tree

	2	3
1	8	4
7	6	5

\downarrow| 1 | 2 | 3 |
| :---: | :---: | :---: |
| | 8 | 4 |
| 7 | 6 | 5 |

\rightarrow| 2 | | 3 |
| :---: | :---: | :---: |
| 1 | 8 | 4 |
| 7 | 6 | 5 |

\rightarrow| 1 | 2 | 3 |
| :---: | :---: | :---: |
| 8 | | 4 |
| 7 | 6 | 5 |

\downarrow| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 7 | 8 | 4 |
| | 6 | 5 |

GOAL!

\rightarrow| 2 | 3 | |
| :---: | :---: | :---: |
| 1 | 8 | 4 |
| 7 | 6 | 5 |

...
-••

\downarrow| 2 | 8 | 3 |
| :---: | :---: | :---: |
| 1 | | 4 |
| 7 | 6 | 5 |

...

8-Puzzle: Example

	2	3
1	8	4
7	6	5

1	2	3
	8	4
7	6	5

1	2	3
8		4
7	6	5

Possible state representations in LISP (0 is the blank):

- (($\left.\begin{array}{lllllllll}0 & 2 & 3 & 1 & 8 & 4 & 7 & 6 & 5\end{array}\right)$
- (($\left.\left.\begin{array}{llll}0 & 2 & 3\end{array}\right)\left(\begin{array}{lll}1 & 8 & 4\end{array}\right) \quad\left(\begin{array}{lll}7 & 6 & 5\end{array}\right)\right)$
- (($\left.\left.\begin{array}{lll}0 & 1 & 7\end{array}\right)\left(\begin{array}{lll}2 & 8 & 6\end{array}\right) \quad\left(\begin{array}{lll}3 & 4 & 5\end{array}\right)\right)$
- or use the make-array, aref functions.

How easy to: (1) compare, (2) operate on, and (3) store (i.e. size).

10

General Search Algorithm

Pseudo-code:

```
function General-Search (problem, Que-Fn)
    node-list := initial-state
    loop begin
        // fail if node-list is empty
        if Empty(node-list) then return FAIL
        // pick a node from node-list
        node := Get-First-Node(node-list)
        // if picked node is a goal node, success!
        if (node == goal) then return as SOLUTION
        // otherwise, expand node and enqueue
        node-list := Que-Fn(node-list, Expand(node))
    loop end
```


Evaluation of Search Strategies

- time-complexity: how many nodes expanded so far?
- space-complexity: how many nodes must be stored in node-list at any given time?
- completeness: if solution exists, guaranteed to be found?
- optimality: guaranteed to find the best solution?

BFS: Expand Order

Evolution of the queue (bold= expanded and added children):

1. [1] : initial state
2. [2][3] : dequeue 1 and enqueue 2 and 3
3. [3] [4][5] : dequeue 2 and enqueue 4 and 5
4. [4] [5] [6][7] : all depth 3 nodes
5. [8] [9][10][11][12][13][14][15]: all depth 4 nodes

Breadth First Search

- node visit order (goal test): 123456789101112131415
- queuing function: enqueue at end (add expanded node at the end of the list)
- Important: A node taken out of the node list for inspection counts as a single visit!

BFS: Evaluation

branching factor b, depth of solution d :

- complete: it will find the solution if it exists
- time: $1+b+b^{2}+\ldots+b^{d}$
- space: $O\left(b^{d+1}\right)$ where d is the depth of the shallowest solution
- space is more problem than time in most cases (p 75, figure 3.12).
- time is also a major problem nonetheless (same as time)

Depth First Search

- node visit order (goal test): 124895101136121371415
- queuing function: enqueue at left (stack push; add expanded node at the beginning of the list)

DFS: Expand Order

Evolution of the queue (bold=expanded and added children):

1. [1]: initial state
2. [2][3] : pop 1 and push expanded in the front
3. [4][5] [3] : pop 2 and push expanded in the front
4. [8][9] [5] [3] : pop 4 and push expanded in the front

DFS: Evaluation

branching factor b, depth of solutions d, max depth m :

- incomplete: may wander down the wrong path
- time: $O\left(b^{m}\right)$ nodes expanded (worst case)
- space: $O(b m)$ (just along the current path)
- good when there are many shallow goals
- bad for deep or infinite depth state space

Key Points

- Description of a search problem: initial state, goals, operators, etc.
- Considerations in designing a representation for a state
- Evaluation criteria
- BFS, DFS: time and space complexity, completeness
- When to use one vs. another
- Node visit orders for each strategy
- Tracking the stack or queue at any moment

Depth Limited Search (DLS): Limited Depth DFS

- node visit order for each depth limit l :
$1(l=1) ; 123(l=2) ; 1245367(l=3)$;
- queuing function: enqueue at front (i.e. stack push)
- push the depth of the node as well:
(<depth $><$ node $>$)

21

DLS: Evaluation

branching factor b, depth limit l, depth of solution d :

- complete: if $l \geq d$
- time: $O\left(b^{l}\right)$ nodes expanded (worst case)
- space: $O(b l)$ (same as DFS, where $l=m$ (m : max depth of tree in DFS)
- good if solution is within the limited depth.
- non-optimal (same problem as in DFS).

DLS: Expand Order

Evolution of the queue (bold=expanded and then added):
(<depth>, <node>)); Depth limit = 3

1. $[(d 1,1)]$: initial state
2. [(d2,2)][(d2,3)] : pop 1 and push 2 and 3
3. [(d3,4)][(d3,5)] [(d2, 3)] : pop 2 and push 4 and 5
4. $[(d 3,5)][(d 2,3)]$: pop 4, cannot expand it further
5. [(d2, 3)] : pop 5, cannot expand it further
6. [(d3,6)][(d3,7)]: pop 3, and push26, 7

Iterative Deepening Search: DLS by Increasing Limit

- node visit order:

1; 12 3; $1245367 ; 1248951011361213714$ 15; ..

- revisits already explored nodes at successive depth limit
- queuing function: enqueue at front (i.e. stack push)
- push the depth of the node as well: ($<$ depth $><$ node $>$)

IDS: Expand Order

Basically the same as DLS: Evolution of the queue (bold=expanded and then added): (<depth>, <node>)); e.g. Depth limit = 3

1. [$(d 1,1)]$: initial state
2. [(d2,2)][(d2,3)] : pop 1 and push 2 and 3
3. [(d3,4)][(d3,5)] [(d2, 3)]: pop 2 and push 4 and 5
4. $[(d 3,5)][(d 2,3)]$: pop 4, cannot expand it further
5. [(d2, 3)] : pop 5, cannot expand it further
6. [(d3,6)][(d3,7)]: pop 3, and push26, 7

Bidirectional Search (BDS)

- Search from both initial state and goal to reduce search depth.
- $O\left(b^{d / 2}\right)$ of BDS vs. $O\left(b^{d+1}\right)$ of BFS.

IDS: Evaluation

branching factor b, depth of solution d :

- complete: cf. DLS, which is conditionally complete
- time: $O\left(b^{d}\right)$ nodes expanded (worst case)
- space: $O(b d)$ (cf. DFS and DLS)
- optimal!: unlike DFS or DLS
- good when search space is huge and the depth of the solution is not known (*)

BDS: Considerations

1. how to back trace from the goal?
2. successors and predecessors: are operations reversible?
3. are goals explicit?: need to know the goal to begin with
4. check overlap in two branches
5. BFS? DFS? which strategy to use? Same or different?

BDS Example: 8-Puzzle

5	4	
6	1	8
7	3	2

\rightarrow| 5 | 4 | 8 |
| :---: | :---: | :---: |
| 6 | 1 | |
| 7 | 3 | 2 |

$\rightarrow \ldots \leftarrow \leftarrow$| 1 | 2 | 3 |
| :--- | :--- | :--- |
| | 8 | 4 |
| 7 | 6 | 5 |

\leftarrow| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 8 | | 4 |
| 7 | 6 | 5 |

- Is it a good strategy?
- What about Chess? Would it be a good strategy?
- What kind of domains may be suitable for BDS?

Avoiding Repeated States: Strategies

5	4	
6	1	8
7	3	2

\rightarrow| 5 | 4 | 8 |
| :---: | :---: | :---: |
| 6 | 1 | |
| 7 | 3 | 2 |

\rightarrow| 5 | 4 | |
| :---: | :---: | :---: |
| 6 | 1 | 8 |
| 7 | 3 | 2 |

\rightarrow| 5 | 4 | 8 |
| :---: | :---: | :---: |
| 6 | 1 | |
| 7 | 3 | 2 |

- Do not return to the node's parent
- Avoid cycles in the path (this is a huge theoretical problem in its own right)
- Do not generate states that you generated before: use a hash table to make checks efficient

How to avoid storing every state? Would using a short signature (or a checksum) of the full state description help?

Avoiding Repeated States

Repeated states can be devastating in search problems.

- Common cases: problems with reversible operators \rightarrow search space becomes infinite
- One approach: find a spanning tree of the graph

30

Key Points

- DLS, IDS, BDS search order, expansions, and queuing
- DLS, IDS, BDS evaluation
- DLS, IDS, BDS: suitable domains
- Repeated states: why removing them is important

Overview

- Best-first search
- Heuristic function
- Greedy best-first search
- A^{*}
- Designing good heuristics
- $I D A^{*}$
- Iterative improvement algorithms

1. Hill-climbing
2. Simulated annealing

Informed Search

From domain knowledge, obtain an evaluation function.

- best-first search: order nodes according to the evaluation function value
- greedy search: minimize estimated cost for reaching the goal fast, but incomplete and non-optimal.
- A*: minimize $f(n)=g(n)+h(n)$, where $g(n)$ is the current path cost from start to n, and $h(n)$ is the estimated cost from n to goal.

Best First Search

function Best-First-Search (problem, Eval-Fn)

Queuing-Fn \leftarrow sorted list by Eval-Fn(node) return General-Search(problem, Queuing-Fn)

- The queuing function queues the expanded nodes, and sorts it every time by the Eval-Fn value of each node.
- One of the simplest Eval-Fn: estimated cost to reach the goal.

Heuristic Function

- $h(n)=$ estimated cost of the cheapest path from the state at node n to a goal state.
- The only requirement is the $h(n)=0$ at the goal.
- Heuristics means "to find" or "to discover", or more technically, "how to solve problems" (Polya, 1957).

Heuristics: Example

- $h_{\mathrm{SLD}}(n)$: straight line distance (SLD) is one example.
- Start from \mathbf{A} and Goal is I: \mathbf{C} is the most promising next step in terms of $h_{\mathrm{SLD}}(n)$, i.e. $h(C)<h(B)<h(F)$
- Requires some knowledge:

1. coordinates of each city
2. generally, cities toward the goal tend to have smaller SLD.

Greedy Best-First Search: Evaluation

Branching factor b and max depth m :

- Fast, just like Depth-First-Search: single path toward the goal.
- Time: $O\left(b^{m}\right)$
- Space: same as time - all nodes are stored in sorted list(!), unlike DFS
- Incomplete, just like DFS
- Non-optimal, just like DFS

Total Path Cost $=450$

A*: Uniform Cost + Heuristic Search

Avoid expanding paths that are already found to be expensive:

- $f(n)=g(n)+h(n)$
- $f(n)$: estimated cost to goal through node n
- provably complete and optimal!
- restrictions: $h(n)$ should be an admissible heuristic
- admissible heuristic: one that never overestimate the actual cost of the best solution through n
- NOTE: $f(n)$ can be different depending on the path taken to $f(n)$ if multiple paths exists from root to n !

Behavior of A*Search

- usually, the f value never decreases along a given path: monotonicity
- in case it is nonmonotonic, i.e. $f($ Child $)<f($ Parent $)$, make this adjustment:

$$
f(C h i l d)=\max (f(\text { Parent }), g(\text { Child })+h(\text { Child }))
$$

- this is called pathmax

A*Search

function A*-Search (problem)

$$
\begin{aligned}
& g(n)=\text { current cost up till } n \\
& h(n)=\text { estimated cost from } n \text { to goal } \\
& \text { return Best-First-Search(problem, } g+h \text {) }
\end{aligned}
$$

- Condition: $h(n)$ must be an admissible heuristic function!
- A^{*} is optima!

Optimality of A^{*}

G_{2} : suboptimal goal in the node-list.
n : unexpanded node on a shortest path to goal G_{1}

- $f\left(G_{2}\right)=g\left(G_{2}\right)$ since $h\left(G_{2}\right)=0$
- $>g\left(G_{1}\right)$ since G_{2} is suboptimal
- $\geq f(n)$ since h is admissible

Since $f\left(G_{2}\right)>f(n), \mathrm{A}^{*}$ will never select G_{2} for expansion.

Lemma to Optimality of A^{*}

Lemma: A^{*} expands nodes in order of increasing $f(n)$ value.

- Gradually adds f-contours of nodes (cf. BFS adds layers).
- The goal state may have a f value: let's call it f^{*}
- This means that all nodes with $f<f^{*}$ will be expanded!

Optimality of A*: Example

1. Expansion of parent allowed: search fails at nodes B, D, and E.
2. Expansion of parent disallowed: paths through nodes B, D, and \mathbf{E} with have an inflated path cost $g(n)$, thus will become nonoptimal.

Complexity of A^{*}

A* is complete and optimal, but space complexity can become exponential if the heuristic is not good enough.

- condition for subexponential growth:
$\left|h(n)-h^{*}(n)\right| \leq O\left(\log h^{*}(n)\right)$,
where $h^{*}(n)$ is the true cost from n to the goal.
- that is, error in the estimated cost to reach the goal should be less than even linear, i.e. $<O\left(h^{*}(n)\right)$.

Unfortunately, with most heuristics, error is at least proportional with the true cost, i.e. $\geq O\left(h^{*}(n)\right)>O\left(\log h^{*}(n)\right)$.

Linear vs. Logarithmic Growth Error

- Error in heuristic: $\left|h(n)-h^{*}(n)\right|$.
- For most heuristics, the error is at least linear.
- For A^{*} to have subexponential growth, the error in the heuristic should be on the order of $O\left(\log h^{*}(n)\right)$.

A*: Evaluation

- Complete : unless there are infinitely many nodes with $f(n) \leq f(G)$
- Time complexity: exponential in (relative error in $h \times$ length of solution)
- Space complexity: same as time (keep all nodes immediately outside of current f-contour in memory)
- Optimal

Problem with A^{*}

Space complexity is usually exponential!

- we need a memory bounded version
- one solution is: Iterative Deepening A^{*}, or $I D A^{*}$

Heuristic Functions: Example

Eight puzzle

5	4	
6	1	8
7	3	2

1	2	3
8		4
7	6	5

- $h_{1}(n)=$ number of misplaced tiles
- $h_{2}(n)=$ total Manhattan distance (city block distance)
$h_{1}(n)=7$ (not counting the blank tile)
$h_{2}(n)=2+3+3+2+4+2+0+2=18$
* Both are admissible heuristic functions.

Dominance

If $h_{2}(n) \geq h_{1}(n)$ for all n and both are admissible, then we say that $h_{2}(n)$ dominates $h_{1}(n)$, and is better for search.

Typical search costs for depth $d=14$:

- Iterative Deepening : 3,473,941 nodes expanded
- $\mathrm{A}^{*}\left(h_{1}\right): 539$ nodes
- $\mathrm{A}^{*}\left(h_{2}\right): 113$ nodes

Observe that in A^{*}, every node with $f<f^{*}$ is expanded. Since $f=g+h$, nodes with $h(n)<f^{*}-g(n)$ will be expanded, so larger h will result in less nodes being expanded.

- f^{*} is the f value for the optimal solution path.

Other Heuristic Design

- Use composite heuristics: $h(n)=\max \left(h_{1}(n), \ldots, h_{m}(n)\right)$
- Use statistical information: random sample h and true cost to reach goal. Find out how often h and true cost is related.

Designing Admissible Heuristics

Relax the problem to obtain an admissible heuristics.
For example, in 8-puzzle:

- allow tiles to move anywhere $\rightarrow h_{1}(n)$
- allow tiles to move to any adjacent location $\longrightarrow h_{2}(n)$

For traveling:

- allow traveler to travel by air, not just by road: SLD

Iterative Deepening A*: $I D A^{*}$

A^{*} is complete and optimal, but the performance is limited by the available space.

- Basic idea: only search within a certain f bound, and gradually increase the f bound until a solution is found.
- Popular use include path finding in game AI.
function $I D A^{*}$ (problem)
root \leftarrow Make-Node(Initial-State(problem))
f-limit $\leftarrow \mathrm{f}$-Cost(root)
loop do
solution, f-limit \leftarrow DFS-Contour(root, f-limit)
if solution != NULL then return solution
if f-limit $==\infty$ then return failure
end loop

Basically, iterative deepening depth-first-search with depth defined as the f-cost $(f=g+n)$:

57

$I D A^{*}$: Evaluation

- complete and optimal (with same restrictions as in A^{*})
- space: proportional to longest path that it explores (because it is depth first!)
- time: dependent on the number of different values $h(n)$ can assume.

DFS-Contour(root, f-limit)

Find solution from node root, within the f-cost limit of \mathbf{f}-limit. DFS-Contour returns solution sequence and new f-cost limit.

- if f-cost(root) $>\mathbf{f}$-limit, return fail.
- if root is a goal node, return solution and new f-cost limit.
- recursive call on all successors and return solution and minimum f-limit returned by the calls
- return null solution and new f-limit by default

Similar to the recursive implementation of DFS.

58

$I D A^{*}$: Time Complexity

Depends on the heuristics:

- small number of possible heuristic function values \rightarrow small number of f-contours to explore \longrightarrow becomes similar to A^{*}
- complex problems: each f-contour only contain one new node
if A^{*} expands N nodes,
$I D A^{*}$ expands
$1+2+\ldots+N=\frac{N(N+1)}{2}=O\left(N^{2}\right)$
- a possible solution is to have a fixed increment ϵ for the f-limit
\rightarrow solution will be suboptimal for at most ϵ (ϵ-admissible)

Iterative Improvement Algorithms

Start with a complete configuration (all variable values assigned, and optimal), andgradually improve it

- Hill-climbing (maximize cost function)
- Gradient descent (minimize cost function)
- Simulated Annealing (probabilistic)

Hill-Climbing Strategies

Problems of local maxima, plateau, and ridges:

- try random-restart: move to a random location in the landscape and restart search from there
- parallel search
- simulated annealing *

Hardness of problem depends on the shape of the landscape.
*: coming up next

Hill-Climbing

- no queue, keep only the best node
- greedy, no back-tracking
- good for domains where all nodes are solutions
- goal is to improve quality of the solution
- optimization problems
- note that it is different from greedy search, which keeps a node list

Hill-Climbing and Gradient Search: Problems

- Possible solution: simulated annealing - gradually decrease randomness of move to attain globally optimal solution (more on this next week).

Simulated Annealing: Overview

Annealing:

- heating metal to a high-temperature (making it a liquid) and then allowing to cool slowly (into a solid); this relieves internal stresses and results in a more stable, lower-energy state in the solid.
- at high temperature, atoms move actively (large distances with greater randomness), but as temperature is lowered, they become more static.

Simulated annealing is similar:

- basically, hill-climbing with randomness that allows going down as well as the standard up
- randomness (as temperature) is reduced over time

Temperature and $P(\Delta E)<\operatorname{rand}(0,1)$

Downward moves of any size are allowed at high temperature, but at low temperature, only small downward moves are allowed.

- Higher temperature $T \rightarrow$ higher probability of downward hill-climbing
- Lower $\Delta E \rightarrow$ higher probability of downward hill-climbing

Simulated Annealing (SA)

Goal: minimize (not maximize) the energy E, as in statistical thermodynamics.
For successors of the current node,

- if $\Delta E \leq 0$, the move is accepted
- if $\Delta E>0$, the move is accepted with probability $P(\Delta E)=e^{-\frac{\Delta E}{k T}}$, where k is the Boltzmann constant and T is temperature.
- randomness is in the comparison: $P(\Delta E)<\operatorname{rand}(0,1)$
$\Delta E=E_{\text {new }}-E_{\text {old }}$.
The heuristic $h(n)$ or $f(n)$ represents E.

66

T Reduction Schedule

High to low temperature reduction schedule is important:

- reduction too fast: suboptimal solution
- reduction too slow: wasted time
- question: does the form of the reduction schedule curve matter? linear, quadratic, exponential, etc.?

The proper values are usually found experimentally.

Simulated Annealing Applications

- VLSI wire routing and placement
- Various scheduling optimization tasks
- Traffic control
- Neural network training
- etc.

Key Points

- best-first-search: definition
- heuristic function $h(n)$: what it is
- greedy search: relation to $h(n)$ and evaluation. How it is different from DFS (time complexity, space complexity)
- A^{*} : definition, evaluation, conditions of optimality
- complexity of A^{*} : relation to error in heuristics
- designing good heuristics: several rule-of-thumbs
- $I D A^{*}$: evaluation, time and space complexity (worst case)
- hill-climbing concept and strategies
- simulated annealing: core algorithm, effect of T and ΔE, source of randomness.

69

Game Playing

Game Playing

- attractive AI problem because it is abstract
- one of the oldest domains in Al
- in most cases, the world state is fully accessible
- computer representation of the situation can be clear and exact
- challenging: uncertainty introduced by the opponent and the complexity of the problem (full search is impossible)
- hard: in chess, branching factor is about 35 , and 50 moves by each player $=35^{100}$ nodes to search - compare to 10^{40} possible legal board states
- game playing is more like real life than mechanical search

Games vs. Search Problems

"Unpredictable" opponent \rightarrow solution is a contingency plan
Time limits \rightarrow unlikely to find goal, must approximate
Plan of attack:

- algorithm for perfect play (Von Neumann, 1944)
- finite horizon, approximate evaluation (Zuse, 1945; Shannon, 1950; Samuel, 1952-57)
- pruning to reduce costs (McCarthy, 1956)

Two-Person Perfect Information Game

initial state: initial position and who goes first
operators: legal moves
terminal test: game over?
utility function: outcome (win:+1, lose:-1, draw:0, etc.)

- two players (MIN and MAX) taking turns to maximize their chances of winning (each turn generates one ply)
- one player's victory is another's defeat
- need a strategy to win no matter what the opponent does

Types of Games

	deterministic	chance
perfect info	chess, checkers, go, othello	backgammon, monopoly
imperfect info	battle ship	bridge, poker, scrabble

Minimax: Strategy for Two-Person Perfect Info

MAX

MIN

- generate the whole tree, and apply util function to the leaves
- go back upward assigning utility value to each node
- at MIN node, assign min(successors' utility)
- at MAX node, assign max(successors' utility)
- assumption: the opponent acts optimally

Minimax Decision

function Minimax-Decision (game) returns operator
return operator that leads to a child state with the $\max ($ Minimax-Value(child state,game))
function Minimax-Value(state,game) returns utility value
if Goal(state), return Utility(state)
else if Max's move then
\rightarrow return max of successors' Minimax-Value
else
\rightarrow return min of successors' Minimax-Value

Minimax: Evaluation

Branching factor b, max depth m :

- complete: if the game tree is finite
- optimal: if opponent is optimal
- time: b^{m}
- space: $b m$ - depth-first (only when utility function values of all nodes are known!)

Minimax Exercise

Resource Limits

- Time limit: as in Chess \rightarrow can only evaluate a fixed number of paths
- Approaches:

> - evaluation function : how desirable is a given state?
> - cutoff test : depth limit
> - pruning

Depth limit can result in the horizon effect: interesting or devastating events can be just over the horizon!

Evaluation Functions

For chess, usually a linear weighted sum of feature values:

- $\operatorname{Eval}(s)=\sum_{i} w_{i} f_{i}(s)$
- $f_{i}(s)=($ number of white piece X$)$ - (number of black piece X$)$
- other features: degree of control over the center area
- exact values do not matter: the order of Minimax-Value of the successors matter.

β Cuts

When the current min value is less than the successor's max value,

Right subtree can be at least 5 , so MIN will always choose the left path regardless of what appears next.
α Cuts
When the current max value is greater than the successor's min value, don't look further on that min subtree:

Right subtree can be at most 2, so MAX will always choose the left path regardless of what appears next.

82
$\alpha-\beta$ Pruning

- memory of best MAX value α and best MIN value β
- do not go further on any one that does worse than the remembered α and β

$\alpha-\beta$ Pruning Properties

Cut off nodes that are known to be suboptimal.
Properties:

- pruning does not affect final result
- good move ordering improves effectiveness of pruning
- with perfect ordering, time complexity $=b^{m / 2}$
\rightarrow doubles depth of search
\rightarrow can easily reach 8-ply in chess
- $b^{m / 2}=(\sqrt{b})^{m}$, thus $b=35$ in chess reduces to $b=\sqrt{35} \approx 6!!!$

Key Points

- Game playing: what are the types of games?
- Minimax: definition, and how to get minmax values
- Minimax: evaluation
- $\alpha-\beta$ pruning: why it saves time

Overview

- formal $\alpha-\beta$ pruning algorithm
- $\alpha-\beta$ pruning properties
- games with an element of chance
- state-of-the-art game playing with AI
- more complex games

$\alpha-\beta$ Pruning: Initialization

Along the path from the beginning to the current state:

- α : best MAX value
initialize to $-\infty$
- β : best MIN value
initialize to ∞
$\alpha-\beta$ Pruning Algorithm: Max-Value

function Max-Value (state, game, α, β) return utility value α : best MAX on path to state; β : best MIN on path to state
if Cutoff(state) then return Utility(state)
$v \leftarrow-\infty$
for each s in Successor(state) do
$v \leftarrow \operatorname{Max}(\alpha$, Min-Value(s,game, $\alpha, \beta))$
- if $v \geq \beta$ then return $v \quad / *$ CUT!! */
- $\quad \alpha \leftarrow \operatorname{Max}(\alpha, v)$
end
return v

89

$\alpha-\beta$ Pruning Tips

- At a MAX node:
- Only α is updated with the MAX of successors.
- Cut is done by checking if returned $v \geq \beta$.
- If all fails, $\operatorname{MAX}(v$ of succesors) is returned.
- At a MIN node:
- Only β is updated with the MIN of successors.
- Cut is done by checking if returned $v \leq \alpha$.
- If all fails, $\mathrm{MIN}(v$ of succesors) is returned.
$\alpha-\beta$ Pruning Algorithm: Min-Value

function Min-Value (state, game, α, β) return utility value α : best MAX on path to state ; β : best MIN on path to state if Cutoff(state) then return Utility (state)
$v \leftarrow \infty$
for each s in Successor(state) do
$v \leftarrow \operatorname{Min}(\beta, \operatorname{Max}-V a l u e(\mathrm{~s}$, game $, \alpha, \beta))$
if $v \leq \alpha$ then return $v \quad / *$ CUT!! */
$\beta \leftarrow \operatorname{Min}(\beta, v)$
end
return v

$\alpha-\beta$ Exercise

Ordering is Important for Good Pruning

- For MIN, sorting successor's utility in an increasing order is better (shown above; left)
- For MAX, sorting in decreasing order is better.

Game Tree With Chance Element

- chance element forms a new ply (e.g. dice, shown above)

Games With an Element of Chance

Rolling the dice, shuffling the deck of card and drawing, etc.

- chance nodes need to be included in the minimax tree
- try to make a move that maximizes the expected value \rightarrow expectimax
- expected value of random variable X :

$$
E(X)=\sum_{x} x P(x)
$$

- expectimax

$$
\operatorname{expectimax}(C)=\sum_{i} P\left(d_{i}\right) \max _{s \in S\left(C, d_{i}\right)}(\text { utility }(s))
$$

Design Considerations for Probabilistic Games

- the value of evaluation function, not just the scale matters now! (think of what expected value is)
- time complexity: $b^{m} n^{m}$, where n is the number of distinct dice rolls
- pruning can be done if we are careful

State of the Art in Gaming With AI

- Chess: IBM's Deep Blue defeated Garry Kasparov (1997)
- Backgammon: Tesauro's Neural Network \rightarrow top three (1992)
- Othello: smaller search space \rightarrow superhuman performance
- Checkers: Samuel's Checker Program running on 10Kbyte (1952)

Genetic algorithms can perform very well on select domains.

97

Key Points

- formal $\alpha-\beta$ pruning algorithm: know how to apply pruning
- $\alpha-\beta$ pruning properties: evaluation
- games with an element of chance: what are the added elements? how does the minmax tree get augmented?

Hard Games

The game of Go, popular in East Asia:

- $19 \times 19=361$ grid: branching factor is huge!
- search methods inevitably fail: need more structured rules
- the bet was high: $\$ 1,400,000$ prize for the first computer program to beat a select, 12-year old player. The late Mr. Ing Chang Ki (photo above) put up the money from his personal funds.

Photo from http://www.samsloan.com/ing.htm.
98

