
Debugging

CPSC 315 – Programming Studio

Bugs

 Term has been around a long time
− Edison
− Mark I – moth in machine

 Mistake made by programmers
 Also (and maybe better) called:

− Errors
− Defects
− Faults

Sources of Bugs

 Bad Design
− Wrong/incorrect solution to problem
− From system-level to statement-level

 Insufficient Isolation
− Changes in one area affect another

 Typos
− Entered wrong text, chose wrong variable

 Later changes/fixes that aren’t complete
− A change in one area affects another

Debugging in Software 
Engineering

 Programmer speed has high correlation 
to debugging speed

− Best debuggers can go up to 10 times 
faster

 Faster finding bugs
 Find more bugs
 Introduce fewer new bugs



Ways NOT to Debug

 Guess at what’s causing it
 Don’t try to understand what’s causing it
 Fix the symptom instead of the cause

− Special case code
 Blame it on someone else’s code

− Only after extensive testing/proof
 Blame it on the compiler/computer

− Yes, it happens, but almost never is this the real 
cause

An Approach to Debugging

1. Stabilize the error
2. Locate the source
3. Fix the defect
4. Test the fix
5. Look for similar errors

Goal: Figure out why it occurs and fix 
it completely

1. Stabilize the Error

 Find a simple test case to reliably 
produce the error

− Narrow it to as simple a case as possible
 Some errors resist this

− Failure to initialize
− Pointer problems
− Timing issues

1. Stabilizing the Error

 Converge on the actual (limited) error
− Bad: “It crashes when I enter data”
− Better: “It crashes when I enter data in 

non-sorted order”
− Best: “It crashes when I enter something 

that needs to be first in sorted order”
 Create hypothesis for cause

− Then test hypothesis to see if it’s accurate



2. Locate the Source

 This is where good code design helps
 Again, hypothesize where things are 

going wrong in code itself
− Then, test to see if there are errors 

coming in there
− Simple test cases make it easier to check

When it’s Tough to Find 
Source

 Create multiple test cases that cause same 
error

− But, from different “directions”
 Refine existing test cases to simpler ones
 Try to find source that encompasses all 

errors
− Could be multiple ones, but less likely

 Brainstorm for sources, and keep list to 
check

 Talk to others
 Take a break

Finding Error Locations

 Process of elimination
− Identify cases that work/failed hypotheses
− Narrow the regions of code you need to check
− Use unit tests to verify smaller sections

 Process of expansion:
− Be suspicious of:

 areas that previously had errors
 code that changed recently

− Expand from suspicious areas of code

Alternative to Finding Specific 
Source

 Brute Force Debugging
− “Guaranteed” to find bug
− Examples:

 Rewrite code from scratch
 Automated test suite
 Full design/code review
 Fully output step-by-step status

 Don’t spend more time trying to do a “quick” 
debug than it would take to brute-force it.



3. Fix the Defect

 Make sure you understand the problem
− Don’t fix only the symptom

 Understand what’s happening in the 
program, not just the place the error 
occurred

− Understand interactions and 
dependencies

 Save the original code
− Be able to “back out” of change

Fixing the Code

 Change only code that you have a 
good reason to change

− Don’t just try things till they work
 Make one change at a time

4. Check Your Fix

 After making the change, check that it 
works on test cases that caused errors

 Then, make sure it still works on other 
cases

− Regression test
− Add the error case to the test suite

5. Look for Similar Errors

 There’s a good chance similar errors 
occurred in other parts of program

 Before moving on, think about rest of 
program

− Similar routines, functions, copied code
− Fix those areas immediately



Preventing Bugs
Or Finding Difficult Ones

 Good Design
 Self-Checking code
 Output options

− Print statements can be your friend…

Debugging Tools

 Debuggers
− Often integrated
− Can examine state in great detail

 Don’t use debuggers to do “blind probing” 
− Can be far less productive than thinking harder 

and adding output statements
− Use as “last resort” to identify sources, if you 

can’t understand another way

Non-traditional Debugging 
Tools

 Source code comparators (diff)
 Compiler warning messages
 Extended syntax/logic checkers
 Profilers
 Test frameworks


