
Testing

CPSC 315 – Programming Studio

Testing

 Testing helps find that errors exist
− Debugging finds and fixes them

 Systematic attempt to break a program that
is working

 Unlike all other parts of software
development, whose goal is to avoid errors

 Can never prove absence of errors
 Testing alone does not improve quality

Types of Testing

 Unit testing
− Testing of a single class, routine, program
− Usually single programmer
− Testing in isolation from system

 Component testing
− Testing of a class, package, program
− Usually small team of programmers

 Integration testing
− Combined test of two or more classes, packages,

components, or subsystems

Types of Testing
(continued)

 Regression testing
− Repetition of previously tested cases to

find new errors introduced
 System testing

− Executing software in final configuration,
including integration with all other systems
and hardware

− Security, performance, resource loss,
timing issues

Other Testing

 Usually by specialized test personnel
− User tests
− Performance tests
− Configuration tests
− Usability tests
− Etc.

 We’re interested in developer tests

Writing Test Cases First

 Helps identify errors more quickly
 Doesn’t take any more effort than

writing tests later
 Requires thinking about requirements

and design before writing code
 Shows problems with requirements

sooner (can’t write code without good
requirements)

Testing As You Write Code

 Boundary Testing
 Pre- and Post-conditions
 Assertions
 Defensive Programming
 Error Returns

 Waiting until later means you have to relearn
code

− Fixes will be less thorough and more fragile

Boundary Testing

 Most bugs occur at boundaries
− If it works at and near boundaries, it likely works

elsewhere
 Check loop and conditional bounds when

written
− Check that extreme cases are handled

 e.g. Full array, Empty array, One element array
 Usually should check value and +/- 1

 Mental test better than none at all

Preconditions and
Postconditions

 Verify that routine starts with correct
preconditions and produces correct
postconditions

 Check to make sure preconditions met
− Handle failures cleanly

 Verify that postconditions are met
− No inconsistencies created

 Need to define pre-/postconditions clearly
 “Provable” software relies on this approach

Assertions

 Available in C/C++
− assert.h

 Way of checking for pre-/postconditions
 Helps identify where problem occurs

− Before the assertion
− e.g. usually in calling routine, not callee

 Problem: causes abort
− So, useful for testing for errors

Defensive Programming

 Add code to handle the “can’t happen”
cases

 Program “protects” itself from bad data

Error Returns

 Good API and routine design includes
error codes

 Need to be checked

Systematic Testing

 Test of complete code pieces

 Test incrementally
 Test simple parts first
 Know what output to expect
 Verify conservation properties
 Compare independent implementations
 Measure test coverage

Test Incrementally

 Don’t wait until everything is finished
before test

 Test components, not just system
 Test components individually before

connecting them

Test Simple Parts First

 Test most basic, simplest features
 Finds the “easy” bugs (and usually

most important) first

Know What Output To Expect

 Design test cases that you will know
the answer to!

 Make hand-checks convenient
 Not always easy to do

− e.g. compilers, numerical programs,
graphics

Verify Conservation Properties

 Specific results may not be easily verifiable
− Have to write the program to compute the answer

to compare to
 But, often we have known output properties

related to input
− e.g. #Start + #Insert - #Delete = #Final

 Can verify these properties even without
verifying larger result

Compare Independent
Implementations

 Multiple implementations to compute same
data should agree

 Useful for testing tricky code, e.g. to increase
performance

− Write a slow, brute-force routine
− Compare the results to the new, “elegant” routine

 If two routines communicate (or are
inverses), different people writing them helps
find errors

− Only errors will be from consistent
misinterpretation of description

Measure Test Coverage

 What portion of code base is actually
tested?

 Techniques to work toward this
− Following slides

 Tend to work well on only
small/moderate code pieces

 For large software, tools help judge
coverage

Logic Coverage

 Or, Code Coverage
 Testing every branch, every path

through the code
 Can grow (nearly) exponentially with

number of choices/branches
 Only suitable for small to medium size

codes

Structured Basis Testing

 Testing every line in a program
− Ensure that every statement gets tested
− Need to test each part of a logical statement

 Far fewer cases than logic coverage
− But, also not as thorough

 Goal is to minimize total number of test
cases

− One test case can test several statements

Structured Basis Testing
(continued)

 Start with base case where all Boolean
conditions are true

− Design test case for that situation
 Each branch, loop, case statement

increases minimum number of test
cases by 1

− One more test case per variation, to test
the code for that variation

Data Flow Testing

 Examines data rather than control
 Data in one of three states

− Defined – Initialized but not used
− Used – In computation or as argument
− Killed – Undefined in some way

 Variables related to routines
− Entered – Routine starts just before variable is

acted upon
− Exited – Routine ends immediately after variable

is acted upon

Data Flow Testing (continued)

 First, check for any anomalous data sequences
− Defined-defined
− Defined-exited
− Defined-killed
− Entered-killed
− Entered-used
− Killed-killed
− Killed-used
− Used-defined

 Often can indicate a serious problem in code design
 After that check, write test cases

Data Flow Testing (continued)

 Write test cases to examine all defined-
used paths

 Usually requires
− More cases than structured basis testing
− Fewer cases than logic coverage

Example
if (cond1) {
 x = a;
} else {
 x = b;
}
if (cond2) {
 y = x+1;
} else {
 y = x+2;
}
if (cond3) {
 z = c;
} else {
 z = d;
}

Logic Coverage / Code Coverage

1. Conditions: T T T

2. Conditions: T T F

3. Conditions: T F T

4. Conditions: T F F

5. Conditions: F T T

6. Conditions: F T F

7. Conditions: F F T

8. Conditions: F F F

Tests all possible paths

Example
if (cond1) {
 x = a;
} else {
 x = b;
}
if (cond2) {
 y = x+1;
} else {
 y = x+2;
}
if (cond3) {
 z = c;
} else {
 z = d;
}

Structured Basis Testing

1. Conditions: T T T

2. Conditions: F F F

Tests all lines of code

Example
if (cond1) {
 x = a;
} else {
 x = b;
}
if (cond2) {
 y = x+1;
} else {
 y = x+2;
}
if (cond3) {
 z = c;
} else {
 z = d;
}

Data Flow Testing

1. Conditions: T T T

1. Conditions: T F F

2. Conditions: F T ?

3. Conditions: F F ?

Tests all defined-used paths
 Note: cond3 is independent

of first two

Example
if (cond1) {
 x = a;
} else {
 x = b;
}
if (cond2) {
 y = x+1;
} else {
 y = x+2;
}
if (cond3) {
 z = c;
} else {
 z = d;
}

Data Flow Testing

1. Conditions: T T T

1. Conditions: T F F

1. Conditions: F T ?

2. Conditions: F F ?

Tests all defined-used paths
 Note: cond3 is independent

of first two

Example
if (cond1) {
 x = a;
} else {
 x = b;
}
if (cond2) {
 y = x+1;
} else {
 y = x+2;
}
if (cond3) {
 z = c;
} else {
 z = d;
}

Data Flow Testing

1. Conditions: T T T

2. Conditions: T F F

1. Conditions: F T ?

1. Conditions: F F ?

Tests all defined-used paths
 Note: cond3 is independent

of first two

Example
if (cond1) {
 x = a;
} else {
 x = b;
}
if (cond2) {
 y = x+1;
} else {
 y = x+2;
}
if (cond3) {
 z = c;
} else {
 z = d;
}

Data Flow Testing

1. Conditions: T T T

2. Conditions: T F F

3. Conditions: F T ?

1. Conditions: F F ?

Tests all defined-used paths
 Note: cond3 is independent

of first two

Test Case Design
(If you don’t know the code)

 Boundary analysis still applies
 Equivalence partitioning

− Don’t create multiple tests to do the same thing
 Bad data

− Too much/little
− Wrong kind/size
− Uninitialized

 Good data
− Minimum/maximum normal configuration
− “Middle of the Road” data
− Compatibility with old data

Test Automation

 Should do lots of tests, and by-hand is not usually
appropriate

 Scripts can automatically run test cases, report on
errors in output

− But, we need to be able to analyze output automatically…
− Can’t always simulate good input (e.g. interactive

programs)
 People cannot be expected to remain sharp over

many tests
 Automation reduces workload on programmer,

remains available in the future

Regression Testing

 Goal: Find anything that got broken by
“fixing” something else

 Save test cases, and correct results
 With any modifications, run new code

against all old test cases
 Add new test cases as appropriate

Test Support Tools

 Test Scaffold
− Framework to provide just enough support

and interface to test
− Stub Routines and Test Harness

 Test Data Generators
 System Perturber

Stub Routines

 Dummy object/routine that doesn’t provide
full functionality, but pretends to do
something when called

− Return control immediately
− Burn cycles to simulate time spent
− Print diagnostic messages
− Return standard answer
− Get input interactively rather than computed
− Could be “working” but slow or less accurate

Test Harness

 Calls the routine being tested
− Fixed set of inputs
− Interactive inputs to test
− Command line arguments
− File-based input
− Predefined input set

 Can run multiple iterations

Test Data Generators

 Can generate far more data than by hand
 Can test far wider range of inputs
 Can detect major errors/crashes easily
 Need to know answer to test correctness

− Useful for “inverse” processes – e.g.
encrypt/decrypt

 Should weight toward realistic cases

System Perturbers

 Modify system so as to avoid problems that
are difficult to test otherwise

− Reinitialize memory to something other than 0
 Find problems not caught because memory is “usually”

null

− Rearrange memory locations
 Find problems where out-of-range queries go to a

consistent place in other tests

− Memory bounds checking
− Memory/system failure simulation

Other Testing Tools

 Diff tools
− Compare output files for differences

 Coverage monitors
− Determine which parts of code tested

 Data recorder/loggers
− Log events to files, save state information

 Error databases
− Keep track of what’s been found, and rates of errors

 Symbolic debuggers
− Will discuss debugging later, but useful for tests

